RPN详细解剖

读了许多关于Faster-RCNN的文章,但是一直都没能很好地理解整个过程,其实主要就是没能理解RPN。最近有了新的认识,记录一下我的理解,主要是关于RPN的全卷积过程,至于Faster-RCNN其他细节已经有很多文章讲得很好了。

一.特征提取

原paper中作者测试了标准的分类网络如ZF和VGG16来提取特征图。这里我们以VGG16为例,特征网络首先在ImageNet上进行预训练,然后去掉第5个pool2与后面的全连接层,也就是只留到conv5_3,因此此时输出特征图的大小为原图大小的1/16。若原图的shape为224*224*3,则最后输出应为14*14*512。

二.RPN网络

第二步是最重要也是最难理解的一部分,其实重点就在于RPN是一个全卷积神经网络。关于FCN(全卷积神经网络)我会再写一篇文章。

从conv5_3我们得到了大小为14*14*512的特征图,由于卷积的尺寸不变性,这14*14个点可以分别对应到原图上14*14个位置上,具体计算也很简单,按照其比例即可。到这一步我们已经可以很直观地理解到此时已经生成了14*14个512-d的特征向量,每一个512-d的特征向量我们都可以对应到原图上的某一个位置,且14*14个位置按比例分布。

然后对于这个特征图,我们用512个3*3*512的卷积核进行卷积再次得到14*14*512的特征图。这里可能有人有疑问了conv5_3的输出已经是14*14*512了,为什么还要用3*3的卷积核卷积一次得到同样尺寸的输出?可以理解为对特征图又进行了一次平滑操作,增大了网络的容量。

此时,已经可以使用这14*14个512-d的特征向量来对原图上以这14*14个位置为中心的anchors进行预测了。显然,当anchors的数量为k时,每个中心位置,即每个512-d的特征向量都应该用来预测出2k个分值(分别为k个前景,k个背景的分数)与4k(k个水平平移,垂直平移,水平缩放,垂直缩放)个用来微调anchors位置的值。我们使用两个并行的1*1*512的卷积核,卷积核的个数分别为2k个与4k个,因此最后的输出分别为14*14*2k和14*14*4k,正好预测出了14*14*k个anchors是前景与背景的打分以及其回归微调所需的4个值。于是便可以计算得到RPN的LOSS,然后训练RPN,并可将得到的proposals送入下一步继续处理。

è¿éåå¾çæè¿°

至此,相信你应该已经清楚了RPN是如何工作的。

### 使用 Mask R-CNN 实现肺结节检测 #### 数据预处理 为了使 CT 扫描数据适用于 Mask R-CNN 训练,必须先进行一系列的数据预处理操作。CT 图像通常具有不同的体素间距和原点位置[^4]。因此,标准化这些参数至关重要。具体来说: - **坐标转换**:将原始 CT 坐标的体素间距调整到一致的标准(例如 1 mm),并设置统一的原点 (0, 0, 0),以便于后续处理。 - **图像裁剪与重采样**:针对不同大小的输入图片,通过裁剪或填充的方式使其尺寸相同,并按照固定的比例缩小或放大体积。 ```python import numpy as np from skimage import transform def preprocess_ct_scan(image_volume, target_spacing=(1., 1., 1.), new_shape=(128, 128)): """Preprocesses a given CT scan volume.""" # Resample to standard voxel spacing resampled_image = transform.resize( image=image_volume, output_shape=new_shape, mode='constant', anti_aliasing=True) return resampled_image ``` #### 构建模型架构 Mask R-CNN 是一种两阶段的目标检测框架,能够同时执行边界框预测以及实例分割任务。对于肺结节这样的特定应用场景,可以基于现有的开源实现如 Matterport 的版本来构建定制化的解决方案[^1]。 - **骨干网络选择**:ResNet 或者更高效的 EfficientNet 可作为基础特征提取器; - **FPN 结构集成**:利用 Feature Pyramid Network 提升多尺度物体识别能力; - **RPN 组件配置**:Region Proposal Network 设计应考虑肺部特有的解剖结构特点; - **RoI Align 层加入**:确保区域提议后的特征映射更加精准无损。 #### 模型训练 考虑到医学影像的独特性质及其潜在的小样本问题,建议采取迁移学习策略初始化权重,并结合交叉验证方法评估性能指标。此外,由于存在大量负类样本(即背景区域),正负样本比例失衡现象严重,可尝试 Focal Loss 函数缓解此类不平衡带来的影响[^3]。 ```python import tensorflow as tf from mrcnn.model import MaskRCNN config = { 'NAME': "lung_nodule", 'IMAGES_PER_GPU': 2, 'GPU_COUNT': 1, 'NUM_CLASSES': 1 + 1, # Background + Nodules } model = MaskRCNN(mode="training", config=config, model_dir='./logs') model.load_weights(pretrained_model_path, by_name=True, exclude=["mrcnn_class_logits", "mrcnn_bbox_fc", "mrcnn_mask"]) ``` #### 测试与部署 经过充分调优后,最终得到可用于临床辅助诊断系统的高效可靠的肺结节自动检测工具。测试过程中应当严格遵循伦理审查委员会的要求收集足够的测试案例,并邀请放射科医师参与结果审核以保证准确性[^2]。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值