苹果
时间限制:
3000 ms | 内存限制:
65535 KB
难度:
3
-
描述
-
ctest有n个苹果,要将它放入容量为v的背包。给出第i个苹果的大小和价钱,求出能放入背包的苹果的总价钱最大值。
-
输入
- 有多组测试数据,每组测试数据第一行为2个正整数,分别代表苹果的个数n和背包的容量v,n、v同时为0时结束测试,此时不输出。接下来的n行,每行2个正整数,用空格隔开,分别代表苹果的大小c和价钱w。所有输入数字的范围大于等于0,小于等于1000。 输出
- 对每组测试数据输出一个整数,代表能放入背包的苹果的总价值。 样例输入
-
3 3 1 1 2 1 3 1 0 0
样例输出
-
2
来源
- 动态规划经典问题 上传者
动态规划问题,主要是保存每一个状态:1、最简单的是定义一个二维数组price[j][i]来表示背包为j,前i个苹果时的最大价值,分别对第1~n个苹果计算,对于第i个,列出不同容量下的最大值,以便后面的用到,直至算完第n个苹果,最后得到price[v][n]。2、也可以用一个一位数组来保存,因为已知背包容积,用一个数组表示不同容积时所取得的最大价值,对于第1个苹果,算出容积为1~v时的最大值,以便第二个苹果用,对于第二个苹果也可以算出1~v时的最大价值,直至算完第n个苹果,最后得到price[v]。第一种方法:
#include<algorithm> #include<iostream> #include<cstdio> #include<cstring> using namespace std; int price[1001][1001]; int main() { int n,v,c,w; while(scanf("%d%d",&n,&v)==2,n+v) { memset(price,0,sizeof(price)); for(int i=1;i<=n;i++) { scanf("%d%d",&c,&w); for(int j=v;j>=1;j--) { if(j<c) { price[j][i] = price[j][i-1]; continue; } else price[j][i] = max(price[j][i-1] , price[j-c][i-1] + w); } } cout<<price[v][n]<<endl; } return 0; }
第2种方法:
#include<algorithm> #include<iostream> #include<cstdio> #include<cstring> using namespace std; int price[1001]; int main() { int n,v,c,w; while(scanf("%d%d",&n,&v)==2,n+v) { memset(price,0,sizeof(price)); for(int i=1;i<=n;i++) { cin>>c>>w; for(int j=v;j>=c;j--) { price[j] = max(price[j],price[j-c] + w); } } cout<<price[v]<<endl; } return 0; }