优美的Fibonacci数列与矩阵

题目:http://codeforces.com/contest/392/problem/C

 

题意:给定Fibonacci数列F[],令,求的值。

 

分析:对于Fibonacci数列的题目来说一般要构造矩阵。那么本题应该怎样解决?

 

     首先我们设

 

     

 

      因为

 

      所以得到

 

     

 

       那么,我们继续有

 

       然后我们可以构造矩阵了。。。如下

 

       

 

       到了这里,本题完美解决!!!

 

代码:

#include <iostream>
#include <string.h>
#include <stdio.h>

using namespace std;
typedef long long LL;
const int N = 105;
const int M = 45;
const LL MOD = 1000000007;

LL C[M][M];

struct Matrix
{
    LL m[N][N];
};

Matrix A,I;

void Init()
{
    for(int i=0;i<M;i++)
    {
        C[i][0] = C[i][i] = 1;
        if(i == 0) continue;
        for(int j=1;j<=i;j++)
            C[i][j] = (C[i-1][j] % MOD + C[i-1][j-1] % MOD) % MOD;
    }
}

void InitMatrix(int k)
{
    int n = 2 * k + 3;
    for(int i=0;i<n;i++)
    {
        for(int j=0;j<n;j++)
            I.m[i][j] = (i == j);
    }
    A.m[0][0] = 1;
    for(int i=1;i<n;i++)
    {
        if(i <= k + 1)
            A.m[0][i] = C[k][k+1-i];
        else
            A.m[0][i] = A.m[0][i-k-1];
    }
    for(int i=1;i<n;i++)
        A.m[i][0] = 0;
    for(int i=1;i<n;i++)
    {
        if(i <= k + 1)
        {
            for(int j=1;j<n;j++)
            {
                if(j < i) A.m[i][j] = 0;
                else
                {
                    if(j <= k + 1)
                        A.m[i][j] = C[k+1-i][k+1-j];
                    else
                        A.m[i][j] = A.m[i][j-k-1];
                }
            }
        }
        else
        {
            for(int j=1;j<n;j++)
            {
                if(j < i - k - 1) A.m[i][j] = 0;
                else
                {
                    if(j <= k + 1)
                        A.m[i][j] = A.m[i-k-1][j];
                    else
                        A.m[i][j] = 0;
                }
            }
        }
    }
}

Matrix multi(Matrix a,Matrix b,int n) 
{
    Matrix c;
    for(int i=0;i<n;i++)
    {
        for(int j=0;j<n;j++)
        {
            c.m[i][j] = 0;
            for(int k=0;k<n;k++)
            {
                c.m[i][j] += a.m[i][k] * b.m[k][j] % MOD;
                c.m[i][j] %= MOD;
            }
        }
    }
    return c;
}

Matrix power(Matrix A,int n,LL k)
{
    Matrix ans = I, p = A;
    while(k)
    {
        if(k & 1 )
        {
            ans = multi(ans,p,n);
            k--;
        }
        k >>= 1;
        p = multi(p,p,n);
    }
    return ans;
}

int main()
{
    Init();
    LL n;
    int k;
    while(cin>>n>>k)
    {
        InitMatrix(k);
        Matrix t = power(A,2*k+3,n-1);
        LL ans =0;
        for(int i=0;i<2*k+3;i++)
        {
            ans += t.m[0][i];
            ans %= MOD;
        }
        cout<<ans<<endl;
    }
    return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值