斐波那契数列与矩阵

斐波那契数列与矩阵

剑指 Offer 10- I. 斐波那契数列

数学推导

[ 1 1 1 0 ] [ F ( n ) F ( n − 1 ) ] = [ F ( n ) + F ( n − 1 ) F ( n ) ] = [ F ( n + 1 ) F ( n ) ] ⇓ [ 1 1 1 0 ] n [ F ( 1 ) F ( 0 ) ] = [ F ( n + 1 ) F ( n ) ] \begin{equation} \begin{aligned} \begin{bmatrix} 1&1\\ 1&0 \end{bmatrix} \begin{bmatrix} F(n)\\ F(n - 1) \end{bmatrix} = \begin{bmatrix} F(n) + F(n - 1)\\ F(n) \end{bmatrix} = \begin{bmatrix} F(n + 1)\\ F(n) \end{bmatrix} \\ \end{aligned} \end{equation} \\ \begin{aligned} \Downarrow \\ \end{aligned} \\ \begin{equation} \begin{aligned} \begin{bmatrix} 1&1\\ 1&0 \end{bmatrix}^{n} \begin{bmatrix} F(1)\\ F(0) \end{bmatrix} = \begin{bmatrix} F(n + 1)\\ F(n) \end{bmatrix} \\ \end{aligned} \end{equation} \\ [1110][F(n)F(n1)]=[F(n)+F(n1)F(n)]=[F(n+1)F(n)][1110]n[F(1)F(0)]=[F(n+1)F(n)]

  • 因此,只要对 [ 1 1 1 0 ] \begin{bmatrix} 1&1\\ 1&0 \end{bmatrix} [1110]进行n次幂运算后,点乘 [ 1 0 ] \begin{bmatrix} 1\\ 0\end{bmatrix} [10],即可得到F(n)和F(n+1)的值。

复杂度分析

  • 矩阵乘法

    const matrixMultiplication = (M1, M2) => {
      const M1_Rows = M1.length
      const M1_Columns = M1[0].length
      const M2_Rows = M2.length
      const M2_Columns = M2[0].length
    
      if (M1_Columns !== M2_Rows) {
        return new Error('M1,M2不能执行乘法运算')
      }
    
      const res = []
    
      for(let i = 0; i < M1_Rows; i++) {
        const resRow = []
        for(let j = 0; j < M2_Columns; j++) {
          let rowSum = 0
          for(let k = 0; k < M1_Columns; k++) {
            rowSum += (M1[i][k] * M2[k][j]) % (1e9+7)
          }
          resRow.push(rowSum)
        }
        res.push(resRow)
      }
    
      return res
    }
    
    • two 对于矩阵 A m ∗ k A_{m*k} Amk和矩阵 B k ∗ p B_{k*p} Bkp,该算法的时间复杂度是 O ( m ∗ k ∗ p ) O(m*k*p) O(mkp)
  • 矩阵幂运算

    const matrixPower = (M, n) => {
      let res = M
      for (let i = 1; i < n; i++) {
        res = matrixMultiplication(M, res)
      }
      return res
    }
    
    • 对方阵 A m ∗ m A_{m*m} Amm求n次幂的时间复杂度是 O ( n ) ∗ O ( m 3 ) = O ( n m 3 ) O(n)*O(m^{3})=O(nm^{3}) O(n)O(m3)=O(nm3)
  • 最终,求解 ( A m ) n F m ∗ k (A_{m})^{n}F_{m*k} (Am)nFmk的时间复杂度是 O ( n m 3 ) + O ( m 2 k ) O(nm^{3})+O(m^{2}k) O(nm3)+O(m2k)

  • 但在本题中,A、m、F是确定的,即 A = [ 1 1 1 0 ] , F = [ 1 0 ] , m = 2 A=\begin{bmatrix} 1&1\\ 1&0 \end{bmatrix}, F=\begin{bmatrix} 1 \\ 0 \end{bmatrix},m = 2 A=[1110]F=[10]m=2,所以时间复杂度是 O ( 8 n ) + O ( 8 ) = O ( n ) O(8n)+O(8) = O(n) O(8n)+O(8)=O(n)

进一步优化

  • 幂运算可以进一步优化
    const getPower = (base, power) = > {
    	let res = 1
    	while (power > 0) {
    		// 奇数
    		if ((power & 1) === 1) {
    			res = res * base
    		}
    		// 右移1位,相当于 / 2
    		power >>= 1
    		base = base * base
    	}
    	return res
    }
    
  • 应用到矩阵上
    const matrixPower = (M, n) => {
      	// 单位矩阵
      	let res = [[1, 0], [0, 1]]
    	while (n > 0) {
    		if ((n & 1) === 1) {
    	    	// 单位矩阵A*M = M*A
    			res = matrixMultiplication(M, res)
    		}
    		n >>= 1
    		M = matrixMultiplication(M, M)
      	}
      	return res
    }
    
  • 时间复杂度为O(lgn)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值