RT
#调用库
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn import neighbors, datasets
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import confusion_matrix
#数据集加载
dataset = datasets.load_iris()
X = dataset.data[:, :2]
y = dataset.target
attributes_dict = {0:"sepal_length",1:"sepal_width"}
for attribute in attributes_dict:
max_value = np.max(X[:, attribute])
min_value = np.min(X[:, attribute])
mean_value = np.mean(X[:, attribute])
print("{} 最大值:{}".format(attributes_dict[attribute], max_value))
print("{} 最小值:{}".format(attributes_dict[attribute], min_value))
print("{} 平均值:{:.1f}".format(attributes_dict[attribute], mean_value))
print("-------------------------------------")
#数据集划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
#训练KNN