头歌人工智能实训-基于KNN的鸢尾花数据集分类

RT

#调用库
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn import neighbors, datasets
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import confusion_matrix

#数据集加载
dataset = datasets.load_iris()
X = dataset.data[:, :2]
y = dataset.target
attributes_dict = {0:"sepal_length",1:"sepal_width"}
for attribute in attributes_dict:
    max_value = np.max(X[:, attribute])
    min_value = np.min(X[:, attribute])
    mean_value = np.mean(X[:, attribute])
    print("{} 最大值:{}".format(attributes_dict[attribute], max_value))
    print("{} 最小值:{}".format(attributes_dict[attribute], min_value))
    print("{} 平均值:{:.1f}".format(attributes_dict[attribute], mean_value))
    print("-------------------------------------")

#数据集划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)

#训练KNN
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值