练习题-13

文章讲述了q-阶组合的定义,包括q-阶阶乘和q-阶组合系数的计算方法,以及两个关于q-阶组合的递推关系的证明。着重探讨了(5/3)_2的计算和一般形式的公式证明。
摘要由CSDN通过智能技术生成

(2024年春,合肥高三第一次教学质量检测考试第19题)
设实数 q ≠ 0 q\neq 0 q=0。对任意正整数 n n n,定义 [ n ] q : = 1 + q + … + q n − 1 , [n]_q:=1+q+\ldots + q^{n-1}, [n]q:=1+q++qn1, [ n ] q ! = [ 1 ] q ⋅ [ 2 ] q ⋅ … ⋅ [ n ] q , [n]_q! = [1]_q \cdot [2]_q \cdot \ldots \cdot [n]_q, [n]q!=[1]q[2]q[n]q, ( n k ) q = [ n ] q ! [ k ] q ! [ n − k ] q ! , \binom{n}{k}_q = \frac{[n]_q!}{[k]_q! [n-k]_q!}, (kn)q=[k]q![nk]q![n]q!,
这里约定 0 ≤ k ≤ n , [ 0 ] q ! = 1 0\leq k \leq n, [0]_q!=1 0kn,[0]q!=1.

(1) 计算 ( 5 3 ) 2 \binom{5}{3}_2 (35)2.
(2) 证明:对任意 0 ≤ k ≤ n − 1 0 \leq k \leq n-1 0kn1, 有 ( n k ) q = ( n − 1 k − 1 ) q + q k ( n − 1 k ) q . \binom{n}{k}_q = \binom{n-1}{k-1}_q +q^k \binom{n-1}{k}_q. (kn)q=(k1n1)q+qk(kn1)q.

(3) 证明:对任意 0 ≤ k ≤ n − 1 0 \leq k \leq n-1 0kn1 以及任意非负整数 m m m, 有 ( n + m + 1 k + 1 ) q − ( n k + 1 ) q = ∑ i = 0 m q n − k + i ( n + i k ) q . \binom{n+m+1}{k+1}_q - \binom{n}{k+1}_q =\sum_{i=0}^m q^{n-k+i} \binom{n+i}{k}_q. (k+1n+m+1)q(k+1n)q=i=0mqnk+i(kn+i)q.

在这里插入图片描述

  • 16
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值