The method of little groups

本文概述了Wigner-Mackey方法,讨论了半直积群的表示理论,特别针对Heisenberg群的构造和在有限域上的应用。通过小群方法,探讨了Heisenberg群在上三角矩阵和欧几里得平移群中的表示形式,以及仿射群的表示问题。
摘要由CSDN通过智能技术生成

The idea of the method of little groups, by Wigner and Mackey, can be summarised as follows. (Excerpted from Section 8.2 in GTM 42, Linear representations of finite groups, by J.-P. Serre)

Assume that the group G G G is a semi-direct product of its two subgroups H H H and A A A, with A A A abelian. Denote A ^ : = H o m ( A , C × ) \hat{A}:=\mathrm{Hom}(A, \mathbb{C}^\times) A^:=Hom(A,C×). The group G G G acts on A ^ \hat{A} A^ by ( g χ ) ( a ) = χ ( g − 1 a g ) , ∀ g ∈ G , a ∈ A , χ ∈ A ^ . (g\chi)(a)=\chi(g^{-1}ag), \forall g \in G, a \in A, \chi \in \hat{A}. (gχ)(a)=χ(g1ag),gG,aA,χA^.

Let ( χ i ) i ∈ A ^ / H (\chi_i)_{i \in \hat{A}/H} (χi)iA^/H be a system of representatives for the orbits of H H H in A ^ \hat{A} A^. For each i ∈ A ^ / H i \in \hat{A}/H iA^/H, let H i = S t a b H ( χ i ) = { h ∈ H ∣ h χ i = χ i } H_i = \mathrm{Stab}_H(\chi_i)=\{h \in H \mid h\chi_i = \chi_i\} Hi=StabH(χi)={hHhχi=χi} and let G i = A ⋅ H i < G G_i = A \cdot H_i < G Gi=AHi<G. Extend χ i \chi_i χi to G i G_i Gi by setting χ i ( a h ) = χ i ( a ) , ∀ a ∈ A , h ∈ H i \chi_i(ah)=\chi_i(a), \forall a \in A, h \in H_i χi(ah)=χi(a),aA,hHi.

Now let ρ ∈ I r r ( H i ) \rho \in \mathrm{Irr}(H_i) ρIrr(Hi) and p : G i → H i p: G_i \to H_i p:GiHi the canonical projection. We thus have an irreducible representation ρ ~ = p ∘ ρ \tilde{\rho}=p\circ \rho ρ~=pρ of G i G_i Gi. Finally, by taking the tensor product of χ i \chi_i χi and ρ ~ \tilde{\rho} ρ~ we obtain an irreducible representation χ ⊗ ρ ~ \chi \otimes \tilde{\rho} χρ~ of G i G_i Gi.

Denote θ i , ρ = I n d G i G χ i ⊗ ρ ~ \theta_{i, \rho} = \mathrm{Ind}_{G_i}^G \chi_i \otimes \tilde{\rho} θi,ρ=IndGiGχiρ~. Assume the following results:

Proposition: (a) θ i , ρ \theta_{i, \rho} θi,ρ is irreducible;
(b) If θ i , ρ \theta_{i, \rho} θi,ρ and θ i ′ , ρ ′ \theta_{i', \rho'} θi,ρ are isomorphic, then i = i ′ i = i' i=i and ρ ∼ ρ ′ \rho \sim \rho' ρρ (isomorphic);
© Every irreducible representation of G G G is isomorphic to one of the θ i , ρ \theta_{i, \rho} θi,ρ.

Exercise.

  1. The Heisenberg group H n ( k ) \mathbf{H}_n(k) Hn(k) over a field k k k of dimension n n n can be construct via the exact sequence 0 → k → H n ( k ) → W → 0 , 0 \to k \to \mathbf{H}_n(k)\to W \to 0, 0kHn(k)W0,
    where W = V ⊕ V ′ W=V \oplus V' W=VV and V = k n V= k^n V=kn is a vector space of dimension n n n. The group law of H n ( k ) \mathbf{H}_n(k) Hn(k) is given by ( x , x ′ , a ) ( y , y ′ , b ) = ( x + x ′ , y + y ′ , a + b + x y ′ ) , (x, x', a)(y, y', b)=(x+x', y+y', a+b+xy'), (x,x,a)(y,y,b)=(x+x,y+y,a+b+xy),
    where ( x , x ′ ) , ( y , y ′ ) ∈ W (x, x'), (y, y') \in W (x,x),(y,y)W and a , b ∈ k a, b \in k a,bk.

Solve the following problems.
(i) Find an embedding of H n ( k ) \mathbf{H}_n(k) Hn(k) into the group of unipotent upper-triangluar matrices of the form ( 1 x ⊤ t 0 I n x ′ 0 0 1 ) . \begin{pmatrix} 1 & x^\top & t \\ 0 & I_n & x' \\ 0 & 0 & 1\end{pmatrix}. 100xIn0tx1 .

(ii) Apply the method of little groups to H 1 ( k ) \mathbf{H}_1(k) H1(k) in the case that k = F p k = \mathbb{F}_p k=Fp (a finite field of cardinality p p p), by taking A = { ( 0 , x ′ , a ) } A = \{(0, x', a)\} A={(0,x,a)} and H = { ( x , 0 , 0 ) } H=\{(x, 0, 0)\} H={(x,0,0)}. Find all θ i , ρ \theta_{i, \rho} θi,ρ.

Assume the fact that R ^ ≅ R \hat{\mathbb{R}} \cong \mathbb{R} R^R.

(iii) (Challenge) Apply the method of little groups to H 1 ( k ) \mathbf{H}_1(k) H1(k) in the case that k = R k = \mathbb{R} k=R. Find all θ i , ρ \theta_{i, \rho} θi,ρ.

  1. The Euclidean motion group of the Cartesian plane is the semi-direct product of H = S O ( 2 ) H=\mathbf{SO}(2) H=SO(2) and A = R 2 A=\mathbb{R}^2 A=R2. Apply the method of little groups to this group and work out the representations θ i , ρ \theta_{i, \rho} θi,ρ (The action of H H H on A A A is obvious.)
  2. Do the same thing in 2 to the group B = { ( a b 0 a − 1 ) ∣ a , b ∈ R , a ≠ 0 } . B = \{\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \mid a, b \in \mathbb{R}, a \neq 0\}. B={(a0ba1)a,bR,a=0}.

在这里插入图片描述

  • 9
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值