练习题-14

问题:已知函数 f : R → R f: \mathbb{R} \to \mathbb{R} f:RR满足 f ( x + y ) − f ( x − y ) = f ( x ) f ( y ) , ∀ x , y ∈ R . f(x+y)-f(x-y)=f(x)f(y), \forall x, y \in \mathbb{R}. f(x+y)f(xy)=f(x)f(y),x,yR. f f f.

提示:如果 f f f是常数,则 f f f恒为 0 0 0. 如果 f f f不恒为常数,去证 f f f既是奇函数,也是偶函数,从而 f f f只能是 0 0 0.

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值