问题:已知函数 f : R → R f: \mathbb{R} \to \mathbb{R} f:R→R满足 f ( x + y ) − f ( x − y ) = f ( x ) f ( y ) , ∀ x , y ∈ R . f(x+y)-f(x-y)=f(x)f(y), \forall x, y \in \mathbb{R}. f(x+y)−f(x−y)=f(x)f(y),∀x,y∈R. 求 f f f.
提示:如果 f f f是常数,则 f f f恒为 0 0 0. 如果 f f f不恒为常数,去证 f f f既是奇函数,也是偶函数,从而 f f f只能是 0 0 0.