2017 CCPC 网络赛 1007

链接:HDU 6156

题意

给定l, r, L, R, 求 Ri=Lrj=lf(i,j)
其中

f(i,j)={1[ij]j[ij]

题解

推一下式子:

ans=i=LRj=lrf(i,j)=i=lrj=LR1+(i1)[f(j,i)=i]=i=lrRL+1+i=lrj=LR(i1)[f(j,i)=i]

F(N,d)=Ni=1[f(i,d)=d]

ans=(RL+1)(rl+1)+i=lr(i1)(F(R,i)F(L1,i))

那么, 只要求出 F(N,d)(1<=N<=1e9,2<=d<=36) 就可以了

设N的d进制为:

N=i=0nNidi

即:
Nd=NnNn1....N0

我们的目的是要找出不[1, N]中在d进制下回文数的个数.
很容易得到这些数在d进制下的位数最大为n+1
设目标数为i
1. 考虑i在d进制下是1位, (若n>=1)那么i <= N一定满足,i在当前位的数范围为[1, d - 1]
此时满足条件的i个数为d - 1
2. 考虑i在d进制下是2位,若n>=2, i一定满足i<= N, 只要满足
i0=i1 即可, 同样是d - 1
3. 考虑i在d进制下是bit位的 3<=bit<=n
i满足i<= N, i0=ibit1[1,d1] 而中间的bit-2位, 回文位取相等即可就是 (d1)dbit22
4. 考虑i在d进制下是n + 1位
1) in<Nn , in 取值有 Nn1 种且 in=i0
中间回文位取相等即为 (Nn1)dn12
2) in=Nn
这时候如果 Nn<=N0 直接考虑中间位即可
否则要向前借位


dfs计数即可(dfs过程中i位数是固定的所以只要考虑4)

这题昨天现场20分钟出思路, 结束之前没交上正解, 太弱~

code:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;

ll L, R, l, r;
ll a[35];
ll qpow(ll a, ll b)
{
    ll res = 1;
    while(b)
    {
        if(b & 1) res *= a;
        a *= a;
        b >>= 1;
    }
    return res;
}
ll Div(ll x)
{
    return x % 2 == 0 ? x / 2 : x / 2 + 1;
}
ll Cal(ll d, ll bit)
{
    return 2 * (qpow(d, bit / 2 + 1) - d) / (d - 1) + (bit & 1 ? qpow(d, (bit + 1) /2) : 0);
}


ll dfs(ll a[], ll cnt, ll d)
{

    if(cnt < 0) return 1;//这里有一个计数
    if(cnt == 0) return a[cnt] + 1;//[0, a[cnt]]
    ll num = 0;
    num += a[cnt] * (cnt == 1 ? 1 : qpow(d, (ll)Div(cnt - 1)));//4.1)
    if(a[cnt] > a[0])//4.2)借位
    {
        --a[1];
        ll id = 1;
        while(a[id] < 0 && id < cnt)
        {
            a[id] += d;
            --a[++id];
        }
        if(id == cnt) return num;
    }
    return num + dfs(a + 1, cnt - 2, d);
}
ll cal(ll x, ll d)
{
    ll cnt = 0;
    ll tmp = x;

    while(tmp)
    {
        a[cnt++] = tmp % d;
        tmp /= d;
    }

    cnt = cnt - 1;
    if(cnt < 0) return 0;
    if(cnt == 0) return a[cnt];
    ll num = 0;
    num += (a[cnt] - 1) * (cnt == 1 ? 1 : qpow(d, Div(cnt - 1))) + (cnt > 2 ? (d - 1) * Cal(d, cnt - 2) : 0)+ (d - 1) * (cnt >= 2?2:1);//要根据位数判断计数

    if(a[cnt] > a[0])//借位
    {
        --a[1];
        ll id = 1;
        while(a[id] < 0 && id < cnt)
        {
            a[id] += d;
            --a[++id];
        }
        if(id == cnt) return num;
    }

    return num + dfs(a + 1, cnt - 2, d);

}
int main(){
    //freopen("in.txt", "r", stdin);
   // freopen("out.txt", "w", stdout);
    int T, kas = 0;
    scanf("%d", &T);
    while(T--)
    {
        scanf("%d%d%d%d", &L, &R, &l, &r);
        ll ans = 0;
        for(int i = l; i <= r; ++i)
        {
     //    cout << i << " " <<cal(R, i) << " " <<cal(L - 1, i) << endl;
            ans += (ll)(R - L + 1) + (i - 1) * (cal(R, i) - cal(L - 1, i));
        //    cout << ans << endl;
        }
        printf("Case #%d: %lld\n", ++kas, ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值