机器学习(Machine Learning)基础

本文介绍了机器学习的基础知识,包括有监督学习、无监督学习和强化学习的分类,以及机器学习的流程。详细讨论了监督学习中的分类问题和回归问题,阐述了模型、策略和算法的三要素,并以线性回归和梯度下降为例,解释了算法原理和不同类型的梯度下降方法。
摘要由CSDN通过智能技术生成

机器学习(Machine Learning)基础

概念及用途

	专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径。步骤就是根据历史数据训练机器模型,再将新的问题输入这个模型从而预测未知的事件。
	我们的日常生活中,很多地方都有涉及到机器学习,比如无人驾驶、人脸识别、语音交互以及时下比较热门的推进系统。

机器学习的分类

基于学习方式的分类可以分为有监督学习、无监督学习以及强化学习
1、监督学习:
训练样本包含对应的标签,即带答案的数据,又可以分为分类问题和回归问题。
分类问题:样本标签属于离散型变量(类别型变量),比如判断垃圾邮件或者是肿瘤检测等等;
回归问题:样本标签属于连续性变量(可以任意取值的变量),比如预测房价,预测销售额等等。
1.1、分类问题:可以分为生成模型(概率模型)和判别模型(非概率模型)
1.1.1、判别式模型举例:判别一只羊的种类,从一堆羊中提取特征学习到一个决策边界,然后提取这只羊的特征来放到模型里面进行判断是山羊或者是绵羊;
1.1.2、生成式模型举例:根据山羊的特征学习出一个山羊的模型,再根据绵羊的特征学习出一个绵羊的模型,然后从这只羊中提取特征,放到两个模型中,比较哪个概率比较大。
1.1.3、生成式模型用数据联合概率分布;
判别式模型使用条件概率直接预测;
在这里插入图片描述
2、无监督学习:
3、强化学习:

机器学习的流程

特征表示——选择模型——训练模型——模型评估

机器学习方法的三要素

1、模型:就是要学习的概率分布或者决策函数,所有可能的条件概率分布或者决策函数构成的集合,就是模型的假设空间。
2、策略:从假设空间中学习最优的模型的方法称为策略。
衡量模型好与不好需要一些指标,这时引入损失函数和风险函数来衡量,预测值和真实值通常是不相等的,我们用损失函数或者是代价函数来衡量预测错误的程度,记作
在这里插入图片描述
3、算法:算法是指学习模型时的具体计算方法,求解最优模型归结为一个最优化问题
统计学的算法等价于求解最优问题的算法,主要是求解、析解或者是数值解

机器学习算法的原理

1、线性回归或者是罗辑回归:
1.1、梯度下降算法:梯度下降是一个用来求函数最小值的算法。
1.2、梯度:在单变量的函数中,梯度其实就是函数的微分,代表着函数在某个给定点的切线斜率。在多变量函数中,梯度是对每个变量的偏微分组成的向量,梯度的方向就是这个向量的方向,它是函数在给定点的上升(下降)最快的方向。
1.3、梯度下降求极值点的原理:因为位于极值点的时候,梯度趋近于零,自变量的变化速度也会变小,当自变量的更新前后差值达到设定的阀值的时候,则停止迭代。
1.4、重复直至收敛:
在这里插入图片描述
1.5、梯度下降法关键在于求出代价函数的导数:
在这里插入图片描述
梯度下降求函数极值点的方法:

import numpy as np
def f(x):
    return x**2-4*x+4
def h(x):
    return 2*x-4
a=16
step=0.1
count=0
deta_a=16
error_rate=1e-10
while deta_a>error_rate:
    a=a-step*h(a)
    deta_a=np.abs(deta_a-a)
    count+=1
print("梯度下降迭代第{}次".format(count,a,f(a)))
print("迭代次数%d"%count)
print("极值点为(%f,%f)"%(a,f(a)))

1.6、梯度下降的三种方法:批量梯度下降、随即梯度下降、小批量梯度下降。
1.6.1、批量梯度下降(batch gradient decent)
在这里插入图片描述

(https://img-blog.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值