特征工程

特征工程是机器学习中至关重要的步骤,包括数据预处理、特征选择等环节。数据预处理涉及无量纲化,如标准化和区间缩放,解决不同规格、缺失值等问题。特征选择则关注特征发散性和与目标的相关性,采用过滤法、包装法和嵌入法。通过这些方法,可以提高模型的性能和效率。
摘要由CSDN通过智能技术生成

常用的特征工程方法

1、特征工程是什么

有这么一句话在业界广泛流传:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。那特征工程到底是什么呢?顾名思义,其本质是一项工程活动,目的是最大限度地从原始数据中提取特征以供算法和模型使用。通过总结和归纳,目前认为特征工程包括以下方面:
在这里插入图片描述
特征处理是特征工程的核心部分,sklearn提供了较为完整的特征处理方法,包括数据预处理、特征选择、降维等。

2、数据预处理

通过特征提取,我们能得到未经处理的特征,这时的特征有可能有以下问题:

a,不属于同一量纲:即特征的规格不一样,不能够放在一起比较;
定性特征不能直接使用:某些机器学习算法和模型只能接受定量特征的输入,那么需要将定性特征转换为定量特征。最简单的方式是为每一种定性值指定一个定量值,但是这种方式过于灵活,增加了调参的工作。通常使用哑编码的方式将定性特征转换为定量特征:假设有N种特征,当原始特征值为第i种定性值时,第i个扩展特征为1,其他扩展特征赋值为0。哑编码的方式相比直接指定的方式,不用增加调参的工作,对于线b,性模型来说,使用哑编码的特征可达到非线性的效果;
c,存在缺失值:缺失值需要补充;
d,信息利用率低:不同的机器学习算法和模型对数据中信息的利用是不同的,之前提到在线性模型中,使用对定性特征哑编码可以达到非线性的效果。类似地,对定量变量多项式化,或者进行其他的转换,都能达到非线性的效果。
使用sklearn中是的preprocessing库来进行数据预处理,可以覆盖以上问题的解决方案。

2.1 无量纲化

无量纲化使不同规格的数据转换到同一规格。常用的无量纲化方法有标准化和区间缩放法。标准化的前提是特征值服从正态分布,标准化后,其转换成标准正态分布;区间缩放法利用了边界值信息,将特征的取值区间缩放到某个特点的范围,例如[0,1]等。
2.1.1 标准化
标准化需要计算特征的均值和标准差,公式表达为:
在这里插入图片描述
使用preprocessing的StandardScaler类对数据进行标准化的代码如下:
在这里插入图片描述
2.1.2 区间缩放法
区间缩放法的思路有多种,常见的一种为利用两个最值进行缩放,公式表达为:
在这里插入图片描述
使用preprocessing库的MinMaxScaler类对数据进行区间缩放的代码如下:
在这里插入图片描述
2.1.3 标准化与归一化的区别
简单来说,标准化是依照特征矩阵的列处理数据,其通过z-score的方法,将样本的特征值转换到同一量纲下;归一化是依照特征矩阵的行处理数据,其目的在于样本向量在点乘运算或其他核函数计算相似性时,拥有统一的标准,也就是说都转化为“单位向量”。规则为l2的归一化公式如下:
在这里插入图片描述
使用preprocessing库的Normalizer类对数据进行归一化的代码如下:
在这里插入图片描述
2.2 对定量特征二值化
定量特征的二值化的核心在于设定一个阈值,小于等于阈值的赋值为0,大于阈值的赋值为1,公式表达如下:
在这里插入图片描述
使用preprocessing库的Binarizer类对数据进行二值化的代码如下:
在这里插入图片描述
2.3 对定性特征哑编码
由于IRIS数据集的特征皆为定量特征,故使用其目标值进行哑编码(实际上是不需要的)。
使用preprocessing库的OneHotEncoder类对数据进行哑编码的代码如下:
在这里插入图片描述
2.4 缺失值计算
由于IRIS数据集没有缺失值,故对数据集新增一个样本,4个特征均赋值为NaN,表示数据缺失。
使用preprocessing库的Imputer类对数据进行缺失值计算的代码如下:

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值