- 博客(20)
- 资源 (2)
- 收藏
- 关注
原创 【技巧学习】之正则表达式详解
作者:張張張張github地址:https://github.com/zhanghekai【转载请注明出处,谢谢!】文章目录1. 基本匹配2. 元字符2.1 点运算符 `.`2.2 字符集2.2.1 否定字符集2.3 重复次数2.3.1 `*` 号2.3.2 `+` 号2.3.3 `?` 号2.4 `{}` 号2.5 `(...)` 特征标群2.6 `|` 或运算符2.7 转码特殊字符2....
2020-02-25 15:38:24 701
原创 【图结构】之HAN:Heterogeneous Graph Attention Network
作者:張張張張github地址:https://github.com/zhanghekai【转载请注明出处,谢谢!】HANHANHAN源代码地址:https://github.com/Jhy1993/HANHANHANHAN论文地址:http://www.shichuan.org/doc/66.pdfHAN\qquad HANHAN是在GATGATGAT的基础上实现的,它的模型分为两部...
2019-12-18 19:31:14 1701 1
原创 【图结构】之图注意力网络GAT详解
作者:張張張張github地址:https://github.com/zhanghekai【转载请注明出处,谢谢!】GATGATGAT源代码地址:https://github.com/PetarV-/GATGATGATGAT论文地址:https://arxiv.org/pdf/1710.10903.pdf\qquad GATGATGAT是在GCNGCNGCN的基础上进行改进而得以实现...
2019-09-01 15:06:58 38538 5
原创 【图结构】之图神经网络GCN详解
作者:張張張張github地址:https://github.com/zhanghekai【转载请注明出处,谢谢!】一、GCN诞生的由来\qquadCNN系列: 做图像识别时,对象是图片,是一个二维的结构,于是人们发明了CNNCNNCNN这种神奇的模型来提取图片的特征。CNNCNNCNN的核心在于它的kernelkernelkernel,kernelkernelkernel是一个个小窗口...
2019-09-01 15:03:39 18295 12
原创 【图结构】meta-graph相似度计算
作者:張張張張github地址:https://github.com/zhanghekai【转载请注明出处,谢谢!】文章目录meta-graph相似度计算1. meta-graph的定义2. 与meta-path相比3.meta-graph相似性计算meta-graph相似度计算1. meta-graph的定义\qquadmeta−graph  Mmeta...
2019-08-22 14:43:32 3611 5
原创 【LeetCode技巧总结】位运算操作技巧
作者:張張張張github地址:https://github.com/zhanghekai【转载请注明出处,谢谢!】由于位运算直接对内存数据进行操作,不需要转成十进制,直接在二进制上进行运算,因此处理速度非常快!按位“与”(Bitwise AND),运算符号为:&\&&a&ba\&ba&b 的操作结果:a...
2019-08-12 15:15:30 1852
原创 【数学建模常用算法】之灰色预测模型GM
作者:張張張張github地址:https://github.com/zhanghekai【转载请注明出处,谢谢!】【参考文献】
2019-05-29 16:48:39 7769 1
原创 【机器学习系列】之朴素贝叶斯代码案例
作者:張張張張github地址:https://github.com/zhanghekai【转载请注明出处,谢谢!】【参考文献】sklearn 贝叶斯部分官网 https://scikit-learn.org/stable/modules/naive_bayes.htmlapache github主页:https://github.com/apachecn/AiLearning...
2019-05-23 10:33:39 758
原创 【机器学习系列】之朴素贝叶斯和半朴素贝叶斯
作者:張張張張github地址:https://github.com/zhanghekai【转载请注明出处,谢谢!】文章目录一、朴素贝叶斯概述二、朴素贝叶斯分类器1. 朴素贝叶斯分类器表达式2. 极大似然估计3. 例题4. 拉普拉斯修正及例题三、朴素贝叶斯算法小结一、朴素贝叶斯概述    \quad\;\;贝叶斯分类是一类分类算法的...
2019-05-23 10:31:47 2258 1
原创 【机器学习系列】之纯python及sklearn实现kNN
作者:張張張張github地址:https://github.com/zhanghekai【转载请注明出处,谢谢!】文章目录一、纯python实现kNN Brute-Force法kNN项目案例:优化约会网站的配对效果二、sklearn实现kNN:KDTree和BallTree一、纯python实现kNN Brute-Force法kNN项目案例:优化约会网站的配对效果项目概述拉克丝使用...
2019-05-19 16:21:46 983
原创 【机器学习系列】之sklearn实现SVM代码
作者:張張張張github地址:https://github.com/zhanghekai【转载请注明出处,谢谢!】【参考文献】apache github主页:https://github.com/apachecn/AiLearning
2019-05-17 12:06:03 5118
原创 【机器学习系列】之k近邻(kNN)
作者:張張張張github地址:https://github.com/zhanghekai【转载请注明出处,谢谢!】
2019-05-17 08:36:56 742
原创 【机器学习系列】之支持向量回归SVR
作者:張張張張github地址:https://github.com/zhanghekai【转载请注明出处,谢谢!】
2019-05-08 11:43:33 6335 1
原创 【机器学习系列】之SVM核函数和SMO算法
作者:張張張張github地址:https://github.com/zhanghekai【转载请注明出处,谢谢!】一、SVM核函数SVM基本型假设的是训练样本是线性可分的,即存在一个划分超平面能将训练样本正确分类。然而在现实任务中,原始样本空间内也许并不存在一个能正确划分两类样本的超平面,如下图所示的“异或”问题就不是线性可分的。对于这样的问题,可将样本从原始空间映射到一个更高维的特...
2019-05-06 11:01:09 2805
原创 【机器学习系列】之SVM硬间隔和软间隔
作者:張張張張github地址:https://github.com/zhanghekai【转载请注明出处,谢谢!】SVM概述假定给出训练样本集D={(x1,y1),(x2,y2),...,(xm,ym)},yi∈{−1,+1}D=\{(x_1,y_1),(x_2,y_2),...,(x_m,y_m)\},y_i \in \{-1,+1\}D={(x1,y1),(x2,y2),.....
2019-05-02 15:28:01 9896 8
原创 【机器学习系列】之ID3、C4.5、CART决策树构建代码
作者:張張張張github地址:https://github.com/zhanghekai【转载请注明出处,谢谢!】ID3决策树 西瓜数据集2.0案例项目概述:\quad根据以下6个特征,将西瓜分成两类:好瓜和坏瓜特征:\quad 1.西瓜的颜色\quad 2.西瓜的根卷曲程度\quad 3.敲打西瓜发出的声音\quad 4.西瓜表面的纹理\quad 5.西瓜脐部凹陷情况...
2019-04-30 19:44:25 2063 2
原创 【机器学习系列】之决策树剪枝和连续值、缺失值处理数学公式计算
作者:張張張張github地址:https://github.com/zhanghekai【转载请注明出处,谢谢!】一、剪枝处理 剪枝(pruning)是决策树学习算法对付“过拟合”的主要手段,可通过主动去掉一些分支来降低过拟合的风险。“预剪枝(prepruning):”预剪枝是指在决策树生成过程中,对每个节点在划分前先进行估计,若当前节点的划分不能带来决策树泛化性能提升,则停止划...
2019-04-29 15:44:18 2147 1
原创 【机器学习系列】之“西瓜数据集”决策树构建数学公式计算过程
作者:張張張張github地址:https://github.com/zhanghekai【转载请注明出处,谢谢!】一、决策树概述决策树(Decision Tree)算法是一种基本的分类与回归方法,是最经常使用的数据挖掘算法之一。决策树是一种非线性有监督分类模型必须将已有的数据进行离散化,即:从字符串变成数值。构造决策树的基本思想是随着树深度的增加,节点的“熵”迅速降低,熵降低的速度越快越...
2019-04-23 17:10:45 14551 1
原创 【机器学习系列】之机器学习基础
作者:張張張張github地址:https://github.com/zhanghekai【转载请注明出处,谢谢!】一、机器学习概述**机器学习(Machine Learning,ML)**是使用计算机来彰显数据背后的真实含义,它为了把无序的数据转换成有用的信息。它致力于研究如何通过计算的手段,利用经验来改善系统自身的性能。机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析...
2019-04-17 17:11:16 749
原创 【教程】如何在ICML上查找历年best paper
ICML 是国际机器学习大会。ICML如今已发展为由国际机器学习学会(IMLS)主办的年度机器学习国际顶级会议。但还是好多人不知道如还在icml中找到每年的最佳文章,下面我就告诉大家如何找到历年的best paper。 以2018年和2015年为例。第一步:百度搜索IMCL,第一条搜索记录即为imcl官网;或直接输入网址https://icml.cc/第...
2018-10-19 16:36:18 6965 2
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人