深度学习笔记(一)——感知机模型(Perceptron Model)

本文介绍了神经网络的基础——单层感知机模型,包括其灵感来源、神经元模型的数学表达、学习过程以及单层感知机的局限性。感知机通过权重和阈值的学习,能实现线性可分数据的分类,但无法解决线性不可分问题。为扩展其能力,文章提到了多层感知机(即人工神经网络)的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

零、引言

         感知机,也叫单层神经网络,是最基础的神经网络模型结构。

        神经网络模型由生物神经中得到启发。在生物神经元细胞中,神经突触接收到信号,经过接收并处理信号后判断信号的信息强弱,来做出不同神经电位变化反应。受此启发,科研人员设计出基础的神经网络模型结构,神经元模型(Neuron Model)。

一、神经元模型

        下图为一个最简单的“M-P神经元结构”,该模型1943年提出,并一直沿用至今:

        从模型示意图看,对于一个单一的神经元模型,其中\{x_1, x_2,...,x_i,...,x_n\}为该模型的输入数据;\{\omega_1,\omega_2,...,\omega_i,...,\omega_n \}为神经元模型计算参数,与输入数据维度一一对应,用于反应输入数据各维度的权重;

感知机是二分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,取 +1 和 -1 二值。感知机对应于输入空间(特征空间)中将实例划分为正负两类的分离超平面,属于判别模型感知机学习算法是基于随机梯度下降法的。具体地,首先任意选取个超平面,然后用梯度下降法不断地极小化目标函数,找出最优超平面。 以下是感知机算法的C++类实现及案例代码: ```c++ #include <iostream> #include <vector> #include <random> using namespace std; class Perceptron { public: Perceptron(int feature_num) : w(feature_num), b(0) {} void train(const vector<vector<double>>& X, const vector<double>& y, int max_iter = 100) { int n_samples = X.size(); int n_features = X[0].size(); mt19937 rng(0); uniform_int_distribution<int> dist(0, n_samples - 1); for (int iter = 0; iter < max_iter; iter++) { int i = dist(rng); double wx = 0; for (int j = 0; j < n_features; j++) { wx += X[i][j] * w[j]; } double yi = y[i]; if (yi * (wx + b) <= 0) { for (int j = 0; j < n_features; j++) { w[j] += yi * X[i][j]; } b += yi; } } } double predict(const vector<double>& x) { double wx = 0; int n_features = x.size(); for (int i = 0; i < n_features; i++) { wx += x[i] * w[i]; } return wx + b > 0 ? 1 : -1; } void print_weights() const { cout << "w = ["; for (double wi : w) { cout << wi << ", "; } cout << "], b = " << b << endl; } private: vector<double> w; double b; }; int main() { vector<vector<double>> X{ {3, 3}, {4, 3}, {1, 1} }; vector<double> y{1, 1, -1}; Perceptron model(X[0].size()); model.train(X, y); model.print_weights(); cout << "predict([3, 4]) = " << model.predict({3, 4}) << endl; return 0; } ``` 在上述代码中,Perceptron类代表感知机模型。train函数接受训练数据X和y,以及最大迭代次数max_iter,默认为100。predict函数接受个样本特征向量x,返回其预测的类别标签。print_weights函数打印训练后得到的权重和偏置项。 本例中,使用学习率为1的随机梯度下降法进行模型训练。训练数据X是个3x2的矩阵,y是个包含3个元素的向量,表示3个样本的类别标签。模型训练完毕后,使用predict函数对特定样本进行预测。 以上是感知机算法的C++类实现及案例代码,希望对你有所帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值