特征工程

全文摘抄:https://www.cnblogs.com/jasonfreak/p/5448385.html

一、数据预处理

通过特征提取,我们能得到未经处理的特征,这时的特征可能有以下问题:

  1. 不属于同一量纲:即特征的规格不一样,不能够放在一起比较。无量纲化可以解决这一问题。
  2. 信息冗余:对于某些定量特征,其包含的有效信息为区间划分,例如学习成绩,假若只关心“及格”或不“及格”,那么需要将定量的考分,转换成“1”和“0”表示及格和未及格。二值化可以解决这一问题。
  3. 定性特征不能直接使用:某些机器学习算法和模型只能接受定量特征的输入,那么需要将定性特征转换为定量特征。最简单的方式是为每一种定性值指定一个定量值,但是这种方式过于灵活,增加了调参的工作。通常使用哑编码的方式将定性特征转换为定量特征:假设有N种定性值,则将这一个特征扩展为N种特征,当原始特征值为第i种定性值时,第i个扩展特征赋值为1,其他扩展特征赋值为0。哑编码的方式相比直接指定的方式,不用增加调参的工作,对于线性模型来说,使用哑编码后的特征可达到非线性的效果。(哑编码=独热编码)
  4. 存在缺失值:缺失值需要补充
  5. 信息利用率低:不同的机器学习算法和模型对数据中信息的利用是不同的,之前提到在线性模型中,使用对定性特征哑编码可以达到非线性的效果。类似地,对定量变量多项式化,或者进行其他的转换,都能达到非线性的效果。
  6. 我们使用sklearn中的preproccessing库来进行数据预处理,可以覆盖以上问题的解决方案。

1.1无量纲华

无量纲化使不同规格的数据转换到同一规格。常见的无量纲化方法有标准化和区间缩放法。标准化的前提是特征值服从正态分布,标准化后,其转换成标准正态分布。区间缩放法利用了边界值信息,将特征的取值区间缩放到某个特点的范围,例如[0, 1]等。

1. 1.1标准化

标准化需要计算特征的均值和标准差,使用preproccessing库的StandardScaler类对数据进行标准化。 x ′ = x − X ‾ S x'=\frac{x-\overline{X}}{S} x=SxX

from sklearn.preprocessing import StandardScaler
StandardScaler().fit_transform(iris.data)

1.1.2区间缩放

区间缩放法的思路有多种,常见的一种为利用两个最值进行缩放,公式表达为: x ′ = x − M i n M a x − M i n x'=\frac{x-Min}{Max-Min} x=MaxMinxMin

from sklearn.preprocessing import MinMaxScaler
MinMaxScaler().fit_transform(iris.data)

1.1.3归一化

简单来说,标准化是依照特征矩阵的列处理数据,其通过求z-score的方法,将样本的特征值转换到同一量纲下。
归一化是依照特征矩阵的行处理数据,其目的在于样本向量在点乘运算或其他核函数计算相似性时,拥有统一的标准,也就是说都转化为“单位向量”。规则为l2的归一化公式为 x ′ = x ∑ j m x [ j ] 2 x'=\frac{x}{\sqrt{\sum^{m}_{j}x[j]^{2}}} x=jmx[j]2 x

from sklearn.preprocessing import Normalizer
Normalizer().fit_transform(iris.data)

1.2对定量特征二值化

定量特征二值化的核心在于设定一个阈值,大于阈值的赋值为1,小于等于阈值的赋值为0

from sklearn.preprocessing import Binarizer
Binarizer(threshold=3).fit_transform(iris.data)

1.3对定性特征进行编码

使用preproccessing库的OneHotEncoder类对数据进行哑编码的代码如下:

from sklearn.preprocessing import OneHotEncoder
OneHotEncoder().fit_transform(iris.target.reshape((-1,1)))

1.4缺失值计算

缺失值计算可以填0、填Nan,取平均值,或者是填入指定值。

1.5数据变换

常见的数据变换有基于多项式的、基于指数函数的、基于对数函数的。4个特征,度为2的多项式转换公式如下:
( x 1 ′ , x 2 ′ , x 3 ′ , x 4 ′ , x 5 ′ , x 6 ′ , x 7 ′ , x 8 ′ , x 9 ′ , x 10 ′ , x 11 ′ , x 12 ′ , x 13 ′ , x 14 ′ , x 15 ′ , x 16 ′ , x 17 ′ , x 18 ′ = ( 1 , x 1 , x 2 , x 3 , x 4 , x 1 2 , x 1 ∗ x 2 , x 1 ∗ x 3 , x 1 ∗ x 4 , x 2 2 , x 2 ∗ x 3 , x 2 ∗ x 4 , x 3 2 , x 3 ∗ x 4 , x 4 2 ) (x'_{1},x'_{2},x'_{3},x'_{4},x'_{5},x'_{6},x'_{7},x'_{8},x'_{9},x'_{10},x'_{11},x'_{12},x'_{13},x'_{14},x'_{15},x'_{16},x'_{17},x'_{18}=(1,x_{1},x_{2},x_{3},x_{4},x_{1}^{2},x_{1}*x_{2},x_{1}*x_{3},x_{1}*x_{4},x_{2}^{2},x_{2}*x_{3},x_{2}*x_{4},x_{3}^{2},x_{3}*x_{4},x_{4}^{2}) (x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18=(1,x1,x2,x3,x4,x12,x1x2,x1x3,x1x4,x22,x2x3,x2x4,x32,x3x4,x42)

from sklearn.preprocessing import PolynomialFeatures
PolynomialFeatures().fit_transform(iris.data)

二、特征选择

当数据预处理完成后,我们需要选择有意义的特征输入机器学习的算法和模型进行训练。通常来说,从两个方面考虑来选择特征:

  1. 特征是否发散:如果一个特征不发散,例如方差接近于0,也就是说样本在这个特征上基本上没有差异,这个特征对于样本的区分并没有什么用。
  2. 特征与目标的相关性:这点比较显见,与目标相关性高的特征,应当优选选择。除方差法外,本文介绍的其他方法均从相关性考虑。

根据特征选择的形式又可以将特征选择方法分为3种:

  1. Filter:过滤法,按照发散性或者相关性对各个特征进行评分,设定阈值或者待选择阈值的个数,选择特征。
  2. Wrapper:包装法,根据目标函数(通常是预测效果评分),每次选择若干特征,或者排除若干特征。
  3. Embedded:嵌入法,先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据系数从大到小选择特征。类似于Filter方法,但是是通过训练来确定特征的优劣。

2.1Filter

2.1.1方差选择法

使用方差选择法,先要计算各个特征的方差,然后根据阈值,选择方差大于阈值的特征。

from sklearn.feature_selection import VarianceThreshold
VarianceThreshold(threshold=3).fit_transform(iris.data)

2.1.2相关系数法

使用相关系数法,先要计算各个特征对目标值的相关系数以及相关系数的P值。

from sklearn.feature_selection import SelectKBest
from scipy.stats import pearsonr
SelectKBest(lambda X, Y: array(map(lambda x:pearsonr(x, Y), X.T)).T, k=2).fit_transform(iris.data, iris.target)

2.1.3卡方检验

经典的卡方检验是检验定性自变量对定性因变量的相关性。

from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
SelectKBest(chi2, k=2).fit_transform(iris.data, iris.target)

2.1.4互信息法

经典的互信息也是评价定性自变量对定性因变量的相关性的,为了处理定量数据,最大信息系数法被提出

from sklearn.feature_selection import SelectKBest
from minepy import MINE
#由于MINE的设计不是函数式的,定义mic方法将其为函数式的,返回一个二元组,二元组的第2项设置成固定的P值0.5
def mic(x, y):
 	m = MINE()
	m.compute_score(x, y)
	return (m.mic(), 0.5)

SelectKBest(lambda X, Y: array(map(lambda x:mic(x, Y), X.T)).T, k=2).fit_transform(iris.data, iris.target)

2.2Wrapper

2.2.1递归特征消除法

递归消除特征法使用一个基模型来进行多轮训练,每轮训练后,消除若干权值系数的特征,再基于新的特征集进行下一轮训练。

from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression

RFE(estimator=LogisticRegression(), n_features_to_select=2).fit_transform(iris.data, iris.target)

2.3Embedded

2.3.1基于惩罚项的特征选择法

使用带惩罚项的基模型,除了筛选出特征外,同时也进行了降维。

from sklearn.feature_selection import SelectFromModel
from sklearn.linear_model import LogisticRegression

SelectFromModel(LogisticRegression(penalty="l1", C=0.1)).fit_transform(iris.data, iris.target)

2.3.2基于树模型的特征选择法

树模型中GBDT也可用来作为基模型进行特征选择

from sklearn.feature_selection import SelectFromModel
from sklearn.ensemble import GradientBoostingClassifier

SelectFromModel(GradientBoostingClassifier()).fit_transform(iris.data, iris.target)

三、降维

当特征选择完成后,可以直接训练模型了,但是可能由于特征矩阵过大,导致计算量大,训练时间长的问题,因此降低特征矩阵维度也是必不可少的。常见的降维方法除了以上提到的基于L1惩罚项的模型以外,另外还有主成分分析法(PCA)和线性判别分析(LDA),线性判别分析本身也是一个分类模型。PCA和LDA有很多的相似点,其本质是要将原始的样本映射到维度更低的样本空间中,但是PCA和LDA的映射目标不一样:PCA是为了让映射后的样本具有最大的发散性;而LDA是为了让映射后的样本有最好的分类性能。所以说PCA是一种无监督的降维方法,而LDA是一种有监督的降维方法。

3.1主成分分析法(PCA)

from sklearn.decomposition import PCA
PCA(n_components=2).fit_transform(iris.data)

3.2线性判别分析法(LDA)

from sklearn.lda import LDA
LDA(n_components=2).fit_transform(iris.data, iris.target)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值