特征选择--wrapper,Embedded

本文介绍了特征选择中的Wrapper方法,如递归特征消除(RFE),以及Embedded方法,如线性模型和正则化,特别是L1正则化在特征选择中的作用,并提到了基于树模型如随机森林的特征重要性计算。通过实例展示了如何运用这些方法进行特征选择。
摘要由CSDN通过智能技术生成

wrapper定义

Wrapper:包装法,根据目标函数(通常是预测效果评分),每次选择若干特征,或者排除若干特征。

  • 包装法需要结合后续选择的机器学习算法,一起选择出能使最终算法达到较高性能的特征子集。
  • 根据目标函数,每次选择部分特征,或者排除部分特征。
  • 常用包装法:

递归特征消除法:

  • 简称RFE,使用一个基模型来进行多轮训练,每轮训练后,移除若干权值系数的特征,再基于新的特征集进行下一轮训练。
  • 对特征含有权重的预测模型(例如,线性模型对应参数coefficients),RFE通过递归减少考察的特征集规模来选择特征。预测模型在原始特征上训练,每个特征指定一个权重,随后那些拥有最小绝对值权重的特征会被踢出特征集。如此往复递归,直至剩余的特征数量达到所需的特征数量。
    RFE具体思路:
  • 指定一个有n个特征的数据集。
  • 选择一个算法模型来做RFE的基模型。
  • 指定保留的特征数量 k(k<n)。
  • 第一轮对所有特征进行训练,算法会根据基模型的目标函数给出每个特征的
    “得分”或排名,将最小“得分”或排名的特征剔除,这时候特征减少为n-1,对其进行第二轮训练,持续迭代,直到特征保留为k个,这k个特征就是选择的特征。

实例

数据集:
在这里插入图片描述
利用递归特征消除法(RFE)选择特征

from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression
x_rfe=RFE(estimator=LogisticRegression(), n_features_to_select=3).fit(X, y
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值