人工神经网络 (ANN)
人工神经网络(ANN),是一组在每一层的多个感知器或神经元。ANN 也称为前馈神经网络,因为输入仅在前向方向上处理。这种类型的神经网络是神经网络最简单的变体之一。它们通过各种输入节点沿一个方向传递信息,直到它到达输出节点。网络可能有也可能没有隐藏节点层,这使得它们的功能更易于解释。
优点:
- 在整个网络上存储信息。
- 能够处理不完整的知识。
- 具有容错性。
- 具有分布式内存。
缺点:
- 硬件依赖。
- 无法解释的网络行为。
- 确定适当的网络结构。
卷积神经网络 (CNN)
卷积神经网络 (CNN) 是当今最流行的模型之一。这种神经网络计算模型使用多层感知器的变体,并包含一个或多个可以完全连接或池化的卷积层。这些卷积层创建了记录图像区域的特征图,该区域最终被分成矩形并发送出去进行非线性处理。
优点:
- 图像识别问题的非常高的准确性。
- 自动检测重要特征,无需任何人工监督。
- 权重共享。
缺点:
- CNN 不对物体的位置和方向进行编码。
- 缺乏对输入数据空间不变的能力。
- 需要大量的训练数据。