美团一面(大概45分钟)
1.自我介绍
2.介绍论文和项目
3.详细问了一下论文中的解决思路和方法
4.用公式详解BP原理
5.详细介绍一个你了解的DL模型,我就介绍了YOLOv3,说到loss function的时候面试官说不用说了
6.卷积是空间不变性还是时间不变性
7.CNN网络有哪些层
8.pooling分几种,分别有什么特点和作用
9.解决过拟合的方法
10.分别介绍L1和L2正则化的方式和优缺点
11.主要使用的语言和框架
12.作为一个机械的学生为什么会想到做DL,怎么克服困难自学的?
13.算法:求两个字符串的最长公共子串(作为一个机械的水硕,真的不会)问我是不是第一次面试,我说是的,他说可以理解,然后面试官说那问个简单的吧,你写个快速排序,然而我还是不会,写了个冒泡算勉强展示了一下
最后就是反问了一些问题,因为就跟朋友聊天一样嘛,我就问了一些工作生活方面的问题,总体来说跟面试官聊的不错,问题方面DL部分我基本全答对了,但是算法是硬伤,心理感觉挺悬的。
美团二面(大概一个小时)
1.自我介绍
2.还是介绍论文和项目
3.还是详细介绍论文中的思路和方法,但是二面面试官明显更专业一些,挑了我论文中的一些很细节的地方问我,我都没注意过。
4.让我用公式推导小的batchsize会对模型训练有什么影响?我回答了BN方面的一些影响,面试官说不行,从BP角度考虑,最后引导我也算大概说对了点。
5.为什么在项目中选用了这个模型为基础进行改进,详细介绍论文中的实验过程,与其他模型的实验比较
6.attention机制的作用以及选用的原因
7.感受野在cv中的作用,大小分别有什么影响?
8.全局感受野和局部感受野的优缺点,哪些论文的方法是从这方面考虑并进行改进的,介绍一下他们的方法
9.resnet的原理以及作用
10.通过公式解释链式法则以及resnet
11.BN的原理和公式,以及为什么要用BN
12.算法:从给定数组中找到三个和为定值k的数。又到了我最头疼的地方,想了半天也只会暴力法,面试官看不下去了,给我了一些提示,然而我都有提示了还是想歪了
最后反问阶段,其实我这时候因为算法还是不会所以感觉基本凉了,不过还是试探性的问了下在这个岗位大概要学一些什么,面试官就给我讲了很多cv在美团的应用以及未来的发展方向,总的来说跟一面差不多,DL答得不错但是算法崩了,但是明显可以感觉到面试官要严格很多,整场面试下来一次没笑过,跟一面形成了巨大的反差,不过我心态还算可以,没有被影响。
为帮助更多对人工智能感兴趣的小伙伴们能够有效的系统性的学习以及论文的研究,小编特意制作整理了一份人工智能学习资料给大家,整理了很久,非常全面。
大致内容包括一些人工智能基础入门视频和文档以及AI常用框架实战视频、计算机视觉、机器学习、图像识别、NLP、OpenCV、YOLO、pytorch、深度学习与神经网络等学习资料、课件源码、国内外知名精华资源、以及AI热门论文等全套学习资料。
需要以上这些文中提到的资料,请先关注作者头条【AI乔治】,回复【666】,即可免费获取~~~~
每一个专栏都是大家非常关心,和非常有价值的话题,如果我的文章对你有所帮助,还请帮忙点赞、好评、转发一下,你的支持会激励我输出更高质量的文章,非常感谢!