机器学习-问答
文章平均质量分 84
专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。 它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。
深度学习与NLP
专注深度学习、NLP相关技术、咨询、最求纯粹的技术。享受学习,分享快乐。
展开
-
什么是机器学习?
学习基本的线性代数、微积分和概率统计等数学知识,这是理解机器学习算法的基础。掌握至少一门编程语言,如Python,用于实现和测试机器学习算法。了解机器学习的基本概念,如监督学习、无监督学习、训练集和测试集等。选择合适的学习资源,如在线课程教科书博客和视频教程。一些常用的学习资源包括Coursera、edX、Udacity等。从最基本的机器学习算法开始,如线性回归和逻辑回归,逐步扩展到更复杂的算法。制定实际项目,应用所学的算法解决实际问题。这可以帮助您将理论知识应用到实际情境中。原创 2023-08-23 21:07:16 · 162 阅读 · 0 评论 -
神经网络和逻辑回归的区别
神经网络和逻辑回归是重要的机器学习技术,可以帮助解决各种分类和回归问题。由于它们在进行预测时的准确性和处理各种数据类型的适应性,因此这些模型已经变得越来越流行。例如,神经网络在图像识别和自然语言处理等领域非常有用,因为它们可以识别数据中难以看到的模式,并捕捉数据中的非线性相关性。另一方面,由于其简单易懂,二元结果情况经常受益于使用逻辑回归。此外,更复杂的模型如神经网络可以建立在逻辑回归的基础上。机器学习实践者必须完全理解这些模型之间的差异及其在特定问题上的应用,以选择适当的算法并获得最佳结果。原创 2023-08-23 16:05:10 · 765 阅读 · 0 评论 -
模型参数与超参数的区别?
模型参数是所选模型的变量,可以通过将给定数据拟合到模型来估计。示例:在上图中,x 是自变量,y 是因变量。目标是为数据拟合回归线。然后使用这条线(模型)来预测未见过的 x 值的 y 值。这里,m 是斜率,c 是直线的截距。这两个参数(m 和 c)是通过最小化 RMSE(均方根误差)将一条直线拟合到数据来估计的。因此,这些参数称为模型参数。线性回归中的 m(斜率)和 c(截距)神经网络中的权重和偏差模型超参数是在模型开始训练之前设置其值的参数。它们不能通过将模型拟合到数据来学习。原创 2023-08-23 16:02:17 · 550 阅读 · 0 评论 -
数据挖掘和 OLAP 的区别?
数据挖掘被定义为用于从更大的任何原始数据集中提取可用数据的过程。数据挖掘的一些关键特征是——OLAP 是一种计算机处理,它使用户能够轻松、有选择地从不同的角度提取和查看数据。它允许用户一次分析来自多个数据库系统的数据库信息。OLAP 数据存储在多维数据库中。需要以上这些文中提到的资料,请点击此处→即可免费获取。原创 2023-08-22 15:05:09 · 428 阅读 · 0 评论 -
计算机科学家和数据科学家的区别?
计算机科学家是具有完整计算机科学知识的人,即研究计算和应用。计算机科学家在该领域发明新技术,他们经常将这些技术应用于实际问题,例如科学或商业。这可能需要他们与工程师等其他专家合作。其中一些科学家可能专注于特定领域,包括编程或数据科学。数据科学家将能够从头到尾完成数据科学项目。它们可以帮助存储大量数据、创建预测建模过程并展示结果。他组织(大)数据。执行描述性统计和分析,以开发洞察力、构建模型和解决业务需求。数据科学家必备的技能是数学和统计、领域知识和软技能、编程和数据库、通信和可视化。原创 2023-08-22 15:02:20 · 181 阅读 · 0 评论 -
人工智能、机器学习和深度学习的区别?
人工智能基本上是通过一组规则(算法)将人类智能融入机器的机制。人工智能是两个词的组合:“人工”是指由人类或非自然事物制造的东西,“智能”是指相应地理解或思考的能力。另一个定义可能是“人工智能基本上是训练你的机器(计算机)模仿人脑及其思维能力的研究”。AI 专注于 3 个主要方面(技能):学习、推理和自我纠正,以获得最大的效率。机器学习基本上是一种学习/过程,它提供系统(计算机)通过其拥有的经验自动学习并相应地改进而无需明确编程。ML 是 AI 的一个应用程序或子集。原创 2023-08-22 14:59:57 · 61 阅读 · 0 评论 -
人工智能和自动化的区别?
人工智能(AI)可以定义为允许机器充当人类智能水平的不同技术的集合。这个过程需要从过去的经验中学习和自我修正,以做出一定的决定并得出一定的结论。自动化被设计为通过一些特定的模式和规则在很少或没有人工交互的情况下自行运行,以执行重复性任务。自动化在日常生活中无处不在。自动化广泛应用于电子商务、银行、电信行业等。示例:当我们与医生预约并在预约前收到电子邮件/消息时,这就像自动回复。需要以上这些文中提到的资料,请点击此处→即可免费获取。原创 2023-08-22 14:57:54 · 509 阅读 · 0 评论 -
人工智能和商业智能的区别
人工智能是计算机科学领域,它与制造经过编程的机器能够像人脑一样思考和解决问题。这些机器可以执行类似人类的任务,也可以像人类一样从过去的经验中学习。人工智能涉及计算机科学的高级算法和理论。它广泛用于机器人和游戏。商业智能是一组技术、程序和应用程序,可帮助我们将原始数据转换为可实际用于决策的有意义的信息。它涉及通过统计方法进行数据分析。它结合了数据挖掘、数据仓库技术和各种工具来提取更多的数据驱动信息。它涉及数据处理,然后将数据用于决策。需要以上这些文中提到的资料,请点击此处→即可免费获取。原创 2023-08-22 14:55:50 · 326 阅读 · 0 评论 -
机器学习分类和回归的区别?
分类和回归是数据挖掘和机器学习中通常处理的两个主要预测问题。分类是寻找或发现有助于将数据分成多个分类类别(即离散值)的模型或函数的过程。在分类中,根据输入中给出的一些参数将数据分类到不同的标签下,然后为数据预测标签。派生的映射函数可以以“IF-THEN”规则的形式展示。分类过程处理数据可以分为二进制或多个离散标签的问题。举个例子,假设想根据之前记录的一些参数来预测A队获胜的可能性。然后会有两个标签是和否。机器学习,分类,回归回归是寻找用于将数据区分为连续实数值而不是使用类或离散值的模型或函数的过程。原创 2023-08-22 14:53:05 · 378 阅读 · 0 评论 -
机器学习和深度学习的区别
机器学习是人工智能 (AI) 的一个子集,它为系统提供了从经验中学习和改进的能力,而无需编程到该级别。机器学习使用数据来训练并找到准确的结果。机器学习专注于开发访问数据并使用它从自身学习的计算机程序。深度学习是机器学习的一个子集,其中人工神经网络和循环神经网络相互关联。这些算法的创建与机器学习完全一样,但它包含更多级别的算法。该算法的所有这些网络统称为人工神经网络。用更简单的术语来说,它就像人脑一样复制,因为所有的神经网络都连接在大脑中,这正是深度学习的概念。它借助算法及其过程解决了所有复杂的问题。原创 2023-08-22 14:50:11 · 154 阅读 · 0 评论 -
数据科学和软件工程的区别?
数据科学可能是一个结合了处理大量信息、创建算法、使用机器学习等以提供商业洞察力的空间。它包含处理大量数据。包括不同的句柄来推断来自数据源的信息,如数据提取、数据清理,然后将其转换为客户端诱人的安排,这可以鼓励使用的数据执行任务。软件工程的特点是准备分析客户的需求,然后规划、构建和测试能够满足这些需求的程序应用程序。软件工程一词是由两个词组成的,程序和工程。该程序可以是坐标程序的集合。软件由设计人员使用任何不同的特定计算机语言编写的精心组织的启发和代码组成。原创 2023-08-22 14:03:56 · 439 阅读 · 0 评论 -
数据科学和机器学习的区别?
如果您不了解公司的业务方面,不知道公司的商业模式是如何运作的,以及您如何无法将其构建得比您更好,那么您对这家公司毫无用处。这项研究包括数据的来源、对其内容的实际研究,以及这些数据如何有助于公司未来的发展。当我们研究这些数据时,我们会获得有关业务或市场模式的宝贵信息,这有助于企业比其他竞争对手更具优势,因为他们通过识别数据集中的模式提高了效率。根据 Drew Conway 的说法,“数据加上数学和统计知识只会让您获得机器学习”,如果您对此感兴趣,那就太好了,但如果您从事数据科学,那就不行了。原创 2023-08-22 14:01:25 · 157 阅读 · 0 评论 -
汇编语言和机器语言的区别
是低级编程语言。它只能用 0 和 1 来表示。早些时候,当我们必须在计算机屏幕上创建图片或显示数据时,仅使用二进制数字(0 和 1)是非常困难的。例如:在计算机系统中写入 120,其表示形式为1111000。所以它很难学。为了克服这个问题,发明了汇编语言。是多于低级和少于高级的语言(如 C、C++、Java、Python 等)。所以它是一种中介语言。汇编语言使用数字、符号和缩写来代替 0 和 1。例如:对于加法、减法和乘法,它使用 Add、Sub 和 Mul 等符号。原创 2023-08-21 20:06:35 · 1265 阅读 · 0 评论 -
数据科学和数据挖掘的区别?
数据科学是一个领域或领域,包括并涉及处理大量数据,并将其用于构建预测性、规范性和规范性分析模型。数据科学是关于挖掘、捕获、(构建模型)分析(验证模型)和利用数据(部署最佳模型)。数据科学是数据和计算的交叉点。数据科学也是计算机科学、商业和统计学领域的融合。数据挖掘是一种从庞大的数据集/库中提取重要信息和知识的技术。它通过仔细提取、审查和处理大量数据以找出对业务很重要的模式和相互关系来获得洞察力。这类似于从岩石和沙子中提取黄金的金矿开采。原创 2023-08-22 13:56:16 · 189 阅读 · 0 评论 -
数据科学和商业智能的区别
数据科学基本上是通过使用各种科学方法、算法和过程从数据中提取信息和知识的领域。因此,它可以被定义为各种数学工具、算法、统计数据和机器学习技术的组合,从而用于从数据中找到有助于决策过程的隐藏模式和洞察力。数据科学处理结构化和非结构化数据。它与数据挖掘和大数据有关。数据科学涉及研究历史趋势,从而利用其结论重新定义当前趋势并预测未来趋势。商业智能 (BI) 基本上是企业用于业务数据分析的一组技术、应用程序和流程。它基本上用于将原始数据转换为有意义的信息,从而用于业务决策和盈利行为。原创 2023-08-21 20:13:00 · 223 阅读 · 0 评论 -
计算机科学和数据科学的区别
计算机科学可以被称为对计算机以及计算概念的研究。它基本上是研究与程序形式的数据交互的过程。它通过使用各种算法来处理信息的操作。因此,计算机科学涉及对硬件、软件和其他组件(如网络和互联网)的研究。计算机科学的硬件部分涉及计算机基本设计及其工作过程的研究。计算机科学的软件部分涉及编程概念和语言的研究。计算机科学还涉及操作系统和编译器。数据科学基本上是通过使用各种科学方法、算法和过程从数据中提取信息和知识的领域。原创 2023-08-21 20:10:29 · 887 阅读 · 0 评论 -
NLP 、NLU 和 NLG 的区别
是人工智能的一个子集,人工智能涉及使用自然语言而不是编码语言或字节语言在人和机器之间进行通信。它提供了以更容易和有效的方式向机器发出指令的能力。是人工智能的一个领域,它处理用户用自然语言提供的输入数据,如文本数据或语音数据。这是一种使计算机和人类之间的交互的方式,就像人类使用自然语言,如英语,法语,印地语等。是自然语言处理的一个子组件,它帮助根据用户提供的输入生成自然语言的输出。该组件以提供输入的同一种语言响应用户,比如用户用英语问了一些问题,然后系统将以英语返回输出。原创 2023-08-21 18:01:56 · 610 阅读 · 0 评论 -
普通处理器和AI处理器的区别
几台个人电脑中主要使用的处理器是普通处理器。基本上中央处理单元被描述为系统的处理器。它使用集成芯片将所有组件组织在一个地方。不同的品牌为计算机系统和移动系统提供不同的基于负载的处理器。处理器是根据版本和代数设计的。原创 2023-08-21 19:52:06 · 351 阅读 · 0 评论 -
大数据与机器学习的区别
是大型组织和企业获取的巨大、庞大或海量的数据、信息或相关统计数据。由于难以手动计算大数据,因此创建和准备了许多软件和数据存储。它用于发现模式和趋势,并做出与人类行为和交互技术相关的决策。机器学习是人工智能的一个子集,它有助于自动学习和改进系统,而无需明确编程。使用算法应用机器学习来处理数据并接受培训,以便在无需人工干预的情况下提供未来预测。机器学习的输入是一组指令或数据或观察。原创 2023-08-21 19:58:23 · 297 阅读 · 0 评论 -
随机森林和AdaBoost的区别
随机森林算法(Random Forest Algorithm)是一种常用的机器学习算法,它将多个决策树(Decision tree)的输出结合起来,得到一个单一的结果。它处理分类和回归问题,因为它结合了决策树的简单性和灵活性,从而显著提高了准确性。AdaBoost算法(Adaptive Boosting)是一种用于集成机器学习系统的Boosting方法。在每一轮中,每棵树的权重会被重新分配,对错误分类的条件赋予更高的权重,因此被称为自适应Boosting。AdaBoost使用多个单层决策树,称为树的森林。原创 2023-08-21 17:58:10 · 553 阅读 · 0 评论 -
ANN, CNN和RNN的区别
他们保存处理节点的输出并将结果反馈到模型中(他们并没有只在一个方向上传递信息)。这就是模型学习预测层结果的方式。RNN 模型中的每个节点都充当存储单元,继续计算和执行操作。如果网络的预测不正确,那么系统会自我学习并在反向传播期间继续朝着正确的预测方向努力。人工神经网络(ANN),是一组在每一层的多个感知器或神经元。这种类型的神经网络是神经网络最简单的变体之一。网络可能有也可能没有隐藏节点层,这使得它们的功能更易于解释。这种神经网络计算模型使用多层感知器的变体,并包含一个或多个可以完全连接或池化的卷积层。原创 2023-08-21 19:47:21 · 2553 阅读 · 0 评论 -
人工智能与人类智能的区别
人工智能基于人类的洞察力,可以通过机器可以毫不费力地实现任务的方式来决定,从基本任务到确实更复杂的任务。制造洞察力的原因是学习、解决问题、推理和感知。该术语可以连接到任何与人类智力有关的机器,例如检查和决策,并提高效率。人工智能涵盖机器人、控制系统、人脸识别、调度、数据挖掘等任务。人类智能或人类的行为已经根据情况、环境得出过去的经验和行为。它完全基于通过我们获得的知识改变他/她自己的环境的能力。它提供了各种各样的信息。原创 2023-08-21 19:55:26 · 720 阅读 · 0 评论