“A Novel Multivariate Bi-LSTM model for Short-Term Equity Price Forecasting”
论文地址:https://arxiv.org/pdf/2409.12208v1
摘要
本文研究了在印度股市中,使用双向多变量长短期记忆网络(Bidirectional Multivariate LSTM)预测短期股票价格的有效性。选取了NIFTY 100中四个主要行业的公司(ICICI Bank、NTPC、Ambuja Cement、Wipro),使用2015至2022年的八年历史数据。评估了单变量LSTM和单变量双向LSTM模型,采用R²、RMSE、MSE、MAE和MAPE等指标。选取了12个与收盘价高度相关的技术指标(如EMA5、SMA5、Bollinger Bands)以优化预测模型。结果表明,提出的双向多变量LSTM模型在四只股票上平均R²得分为99.4779%,比无技术指标的单向多变量LSTM高3.9833%。模型的平均RMSE为0.0103955,MAE为0.007485,MAPE为1.1635%,显示出卓越的预测准确性。
简介
股票市场的波动对经济有着深远的影响,准确的股价预测不仅有助于预防市场崩溃,还能增强金融稳定。传统的预测方法在应对复杂的市场动态时面临诸多挑战,而LSTM网络因其能够有效捕捉时间序列中的长期模式,成为一种有潜力的解决方案。本研究利用单变量和多变量LSTM模型来预测印度国家证券交易所(NSE)的短期股价,特别关注四大关键经济部门的股票表现。为了更精确地捕捉日内波动,我们采用了小时级别的数据,这有助于识别潜在的交易机会并改进短期价格趋势分析。通过回测评估所提出的交易策略和预测模型的有效性,旨在降低金融风险,并提升决策的准确性。这种方法为投资者提供了更为可靠的工具,以应对市场的不确定性。
01 相关研究
股票价格预测的方法从传统的统计模型(如ARIMA和GARCH)演进到机器学习(ML)和深度学习,显著提升了预测的准确性。传统统计方法在捕捉历史数据中的线性模式方面表现出色,但在处理非线性和复杂模式时能力有限。
机器学习模型,例如随机森林和支持向量机,能够应对大规模数据集和复杂的变量交互,但这些模型通常需要大量的超参数调优,并且容易过拟合。人工神经网络(ANN)虽然可以学习复杂的非线性关系,但它们并不擅长处理具有时间依赖性的序列数据。
循环神经网络(RNN)通过引入反馈连接来处理序列数据,但容易遭遇梯度消失问题,限制了其捕捉长期依赖的能力。长短期记忆网络(LSTM)克服了RNN的这一缺陷,能够有效地捕捉长时间