“IVE: Enhanced Probabilistic Forecasting of Intraday Volume Ratio with Transformers”
论文地址:https://arxiv.org/pdf/2411.10956
摘要
本文介绍了一种创新的金融市场成交量比预测技术,特别适用于VWAP(成交量加权平均价格)策略的执行。研究中采用了Transformer模型来预测每分钟级别的日内成交量比例,并通过对数正态变换处理以稳定高波动性的数据。为了增强预测精度,输入的数据集涵盖了成交量统计特征、外部与成交量有关的因素、绝对时间标记以及个股属性。
该模型架构基于编码器-解码器类型的Transformer,并配置了分布头以实现贪婪采样,旨在优化对高流动性股票的预测效果。此外,模型引入了概率性预测机制,用以估计成交量比的期望值和离散程度,从而能够提前识别出重要的日内成交量高峰。在韩国市场使用简化交易逻辑作为代理进行的实际测试表明,相较于传统的VWAP基准,此方法在两个半月的时间段内表现出更佳的性能。研究表明,基于Transformer的概率预测模型在成交量比预测方面展现出了潜力,为后续的研究开辟了新的路径。
简介
本研究开发了一种基于Transformer架构的模型,用于分钟级别的成交量比率预测,以增强VWAP策略的执行准确度。通过对数正态变换的应用,该模型解决了传统方法在预测高波动性成交量比率时遇到的问题。通过整合一个广泛的数据集——包含外部成交量相关特征、时间信息和个股特性——来提升预测的精确性。此外,模型采用了概率预测技术,可以评估成交量比率的平均值和标准差,从而更好地应对市场变化。在韩国市场的实盘交易测试中,此模型的表现超过了VWAP基准,证明了其实际应用的价值。
01 背景
最佳执行和VWAP
在金融交易中,最优执行策略对于减少交易成本至关重要,这通常依赖于交易者的经验直觉或是通