“LLMs for Time Series: an Application for Single Stocks and Statistical Arbitrage”
论文地址:https://arxiv.org/pdf/2412.09394
摘要
大型语言模型(LLMs)在时间序列预测任务中展现了强大的能力,颠覆了其不适用于金融市场收益预测的传统观点。通过Chronos架构进行的预训练和针对美国个股数据的微调,该研究构建了长/短投资组合,并发现LLMs能够从看似随机的时间序列数据中挖掘出市场低效,从而创造超额回报。尽管与专业模型及较小的深度学习模型相比,LLMs在预测性能上还有进一步提升的空间,但模拟结果表明它们已具备显著的预测优势。
简介
深度学习技术在金融领域的应用正在迅速扩展,尤其是在资产定价和系统化交易策略的开发中。Guijarro-Ordonnez等人(2022)的研究采用了包含769个参数的变换器模型结合卷积层,对单个股票的量化交易策略进行了测试,去除了市场共同因素后的残差收益作为预测目标,并使用了诸如PCA和Fama-French因子等方法,取得了积极的效果。Jiang等人(2023)则探索了变换器在时间序列预测中的图像模式识别能力。Wood等人(2022)通过简化参数的深度学习技术改进了趋势跟随指标。Gu等人(2021)证明了变换器可以有效地提取共同收益特征。Qyrana(2024)提出了基于自编码器因子模型的高盈利交易策略。Chen等人(2021)利用深度学习技术发现了资产定价中的异常现象。
本研究旨在评估一个拥有超过1100万个参数的深度学习算法在金融收益预测方面的表现,并将此与之前的研究进行对比。我们将采用零样本评估的方式,即使用Ansari等人(2024)预训练的Chronos模型,在没有专门针对特定市场或资产进行额外训练的情况下,检验其适应性。我们计划构建一个多头和空头投资组合来模拟交易,