“GARCH-Informed Neural Networks for Volatility Prediction in Financial Markets”
论文地址:https://arxiv.org/pdf/2410.00288v1
摘要
波动性作为衡量风险的关键指标,广泛应用于金融投资的定价中。GARCH模型及其变体是用于股票波动性预测的传统工具。近年来,深度学习模型在这一领域的应用逐渐增多,展现了较高的预测精度。本文介绍了一种名为GARCH-Informed Neural Network (GINN)的新模型,它融合了GARCH与LSTM的优势,以提高市场波动性的预测精度。实验结果显示,GINN在外部样本的预测表现上超越了其他时间序列模型,其R²、均方误差(MSE)和平均绝对误差(MAE)等指标更为优越。
简介
市场趋势预测是金融领域的核心议题,许多数学模型通过分析历史数据来预估未来走势。股票价格时间序列由于其高度的噪声和波动性,使得直接预测价格变化较为困难,但对其波动性的预测则显示出一定的规律性。波动性预测对理解股票收益的离散程度至关重要,有助于投资决策。ARCH及其衍生模型(如GARCH)被广泛用于金融市场时间序列分析中,可以有效识别数据中的异方差特征。GARCH的进一步扩展,如EGARCH、GJRGARCH和TGARCH等,旨在更好地捕捉市场的杠杆效应。然而,在特定市场条件下,这些模型的表现可能不尽如人意,且在应对非线性市场特性方面存在局限。
近年来,机器学习模型因具备优越的预测能力和适应性而受到重视,部分观点认为它们比传统统计方法更胜一筹。人工神经网络(ANN)作为一种通用工具,在时间序列建模中展现出高准确性和广泛应用前景,尤其是在工程、经济和金融领域。长短期记忆(LSTM)网络作为波动性建模与时间序列预测的重要手段,以其出色的预测精度和灵活性脱颖而出。不过,ANN及LSTM面临的挑战之一是过拟合问题,这可能导致模型过度依赖训练数据,从而影响其在新数据上的表现。
本文介绍了一种名为GARCH-Informed Neural Network (GINN)的新型混合模型,它融合了机器学习与GARCH模型的优势,以捕捉市场模式。该模型通过将GARCH作为正则化组件嵌入到人工神经网络的损失函数中,以此减少过拟合风险。GINN不仅学习真实数据的特征,还借鉴了GARCH模型的知识,力求全面描绘市场趋势和细节。为了验证GINN的有效性,我们选择了四个基准模型(GARCH、GJRGARCH、TGARCH和未混合的LSTM)进行对比,并在七个全球主要股票市场指数上进行了实验,评估指标包括R²、均方误差(MSE)和平均绝对误差(MAE)。
01方法
波动过程建模
本文研究股票市场波动性,通过日常对数收益率的方差表示。
日常对数收益率公式为:
日常对数收益率时间序列模型为:
其中