“Chinese Stock Prediction Based on a Multi-Modal Transformer Framework: Macro-Micro Information Fusion”
论文地址:https://arxiv.org/pdf/2501.16621
摘要
本研究开发了一种名为多模态Transformer框架(MMF-Trans)的新系统,目标是通过结合包括宏观经济数据、微观市场信息、金融文献和事件知识在内的多种不同类型的数据,提升对中国股市预测的准确度。该框架由四个关键部分组成:
- 四通道并行编码器,专门用于抽取技术指标、金融文本、宏观数据及事件知识图的独特特征;
- 动态门控跨模态融合机制,能自动学习不同模式的重要性,从而实现高效的信息整合;
- 时间对齐混频处理层,采用独特的位置编码方法解决异构数据的时间同步问题;
- 基于图注意力机制的事件影响量化模块,能够追踪并量化事件对市场的动态影响。
实验结果表明,在CSI 300指数成分股预测中,MMF-Trans实现了RMSE降低23.7%,事件响应预测准确性增长41.2%,夏普比率提升了32.6%的成绩。理论上的贡献在于构建了评估政治事件影响的定量体系,并通过数学手段证明了模型的收敛性,同时也解决了不同频率的异构数据对齐的技术难题。此外,还详细描述了模型在智能投资研究平台上的部署情况及其应用,并针对“碳中和”政策进行了定量分析,为投资者和决策者提供了有价值的参考。
简介
研究背景和问题陈述
股票市场的预测充满了复杂性和不确定性,传统的理论如有效市场假说在捕捉市场动态方面表现不佳。特别是在中国股市中,由于政策敏感度高和信息不对称,增加了预测的难度,传统模型难以融合宏观经济指标、政策事件等重要信息,导致预测准确性较低。主要挑战有:
- 信息多样性问题:技术指标、财务报告、宏观数据及突发事件在频率、格式和含义上的显著差异,使得信息整合变得困难;
- 事件响应延迟:现有模型对政策变动和突发事件反应迟缓,无法及时反映短期市场波动;
- 缺乏动态关联:宏观趋势与微观市场信号间的非线性关系复杂,传统线性模型难以对此进行有效建模;
- 影响量化难题:如何准确评估政策事件对股市的影响并将之纳入预测模型仍是一个挑战。
根据CSMAR数据库的数据,在2015年至2022年间,约32.7%的CSI 300成分股出现的异常波动直接与政策事件相关,然而现有模型的解释能力有限(R² < 0.15),这表明它们在捕捉这些事件的影响方面存在明显的不足。
</