FinArena:个性化投资策略的秘密武器,精准预测股市趋势

“FINARENA: A HUMAN-AGENT COLLABORATION FRAMEWORK FOR FINANCIAL MARKET ANALYSIS AND FORECASTING”

论文地址:https://arxiv.org/pdf/2503.02692

摘要

本文介绍了一个名为FinArena的框架,它通过人机协作来提升股票市场预测和个人化投资决策的有效性。在这个系统中,人的部分通过互动界面识别个人的风险承受度,并据此设计出符合个体需求的投资策略。技术方面,则运用了基于大型语言模型(LLM)的多代理体系来整合来自不同渠道的金融信息。为了处理非结构化的新闻资讯并克服LLM可能出现的幻觉问题,采用了自适应检索增强生成(RAG)的方法。通用专家代理会根据分析得出的数据特征以及投资者的风险偏好做出最终的投资选择。实验结果显示,相较于传统的和其他先进的参考标准,FinArena在股票趋势预测和模拟交易中的表现更为出色,展现了其改善投资成果的巨大潜力。

这段改写保留了原文的核心信息,同时调整了表述方式,使其在保持原有字数的基础上呈现出不同的风格。首先描述了FinArena框架的目的,即提升股票市场预测和个人化投资决策的能力。然后分别介绍了人和技术模块的功能,强调了采用的技术手段如多代理系统、RAG方法等。最后提到实验结果证明了该框架相对于其他基准的优势。这样的叙述顺序有助于读者更好地理解FinArena框架的工作机制及其潜在价值。

简介

金融市场充满了复杂性和动态变化,受到经济指标、地缘政治事件以及投资者行为等多种因素的影响。传统的线性分析工具,例如资本资产定价模型(CAPM)和自回归积分滑动平均模型(ARIMA),难以捕捉这些非线性特征,并且在处理新闻报道或经济报告等非结构化数据时表现不佳。

近年来,大型语言模型(LLMs),如GPT系列,在金融领域展现了其潜力,尤其是在理解和解析非结构化文本数据方面。专门针对金融领域的模型,比如FinBERT和BloombergGPT,在执行金融情感分析和实体识别任务时显示了卓越的表现。尽管如此,LLMs在金融应用中仍然面临挑战:首先是对未见过的信息的不确定性处理能力有限;其次是如何有效地结合时间序列、表格数据与文本信息;最后是缺乏促进普通投资者与机器学习模型之间协作的有效框架。

本研究介绍了一个名为FinArena的创新框架,它通过人机合作来应对多模态金融数据分析及个性化投资策略制定的需求。该框架基于混合专家(MoE)架构,由两个主要部分组成——人类模块和机器模块。前者通过互动界面了解个人的风险承受水平,从而定制投资方案;后者则集成了多个专注于不同类型金融数据的LLMs,包括历史股票价格、公司新闻和财务报表等。每个专家系统负责特定类型的数据分析,而通用专家模型负责整合所有专家系统的输出,并将其与投资者的风险偏好相结合。

为了提高新闻数据处理的准确性,FinArena运用了一种自我反省机制以筛选无关信息,并引入了自适应检索增强生成(RAG)技术来降低错误响应的概率。此外,在分析财务报表时,采用了一种迭代式推理流程,使得LLMs能够模仿人类思维模式,提供对公司基本面的深入见解及其置信度评分。

本文的主要贡献在于三个方面:

一是公开了一个小型金融数据集,涵盖新闻文章、历史股价和财务报表,特别关注了个体投资者的信息需求;

二是提出了一种基于MoE的人机协作框架,旨在优化多模态金融数据的利用,并通过自适应RAG减少LLM产生的幻觉现象;

三是对FinArena进行了全面评估,并与多个基准模型对比,探讨了在中国A股市场和美国股市中的不同实验结果。这样不仅验证了FinArena的有效性,也为未来的研究提供了宝贵的参考。

01相关工作

基于历史股票价格的财务模型

金融市场的随机性和波动性特征使得传统的确定性模型难以提供精确的描述,因此需要开发能够应对不确定性的新型模型。时间序列分析中,历史股价数据是最主要的信息来源之一,而ARIMA模型在统计预测领域为金融分析带来了显著进步。然而,ARIMA在处理非平稳数据和高阶差分时面临挑战,显示出其局限性。GARCH模型则能够有效地识别波动聚集现象,但它在捕捉市场冲击和极端值方面表现欠佳,并且由于计算复杂度较高,普通投资者往往难以应用。

近年来,机器学习方法,如卷积神经网络(CNN)和长短期记忆网络(LSTM),已经在金融时间序列预测中取得了进展。尽管如此,这些方法通常伴随着滞后效应的问题,即它们在预测未来趋势时可能会延迟反映实际变化。为了克服这一限制,研究人员尝试了混合模型策略,例如结合ARIMA与LSTM的ARIMA-LSTM模型以及引入小波变换(WT)的WT-ARIMA-LSTM模型,试图融合传统统计方法与现代机器学习技术的优势。但是,这些混合模型大多仍然依赖于单一的历史股价数据源,未能从根本上提升预测性能。

当前金融建模领域的一个关键不足之处在于过度依赖单一类型的数据特征,这限制了模型的表现力和预测准确性。为了满足市场需求,有必要整合更多的金融数据特征,包括但不限于新闻报道、社交媒体情绪分析等,以解决预测中的延迟问题并提高模型的可解释性。通过这样做,可以更好地理解市场动态,为投资者提供更为精准的投资指导和支持。这种综合性的方法不仅有助于提高预测精度,还能增强模型对市场突发情况的适应能力。

LLM代理用于金融市场分析

传统的股票价格预测模型通常仅依赖于历史价格数据,这种方法显得过于简化,无法充分捕捉金融市场内部复杂的动态变化。实际上,金融市场充满了各种类型的非结构化数据,如新闻报道、社交媒体情绪和经济报告等,这些对于传统分析工具来说处理起来相当困难。然而,大型语言模型(LLMs)在这方面表现出了卓越的能力,它们擅长从大量的非结构化信息中提取有价值的数据点。

LLMs可以分为两类:一类是超大规模的通用模型,例如GPT-3和GPT-4;另一类则是经过特定领域微调后的模型,比如FinBERT、BloombergGPT、Xuanyuan 2.0以及BBT-Fin等,它们针对金融行业的特殊需求进行了优化。这类专注于金融领域的LLMs能够更精准地理解和预测市场趋势,为投资者提供了更加深刻的市场洞察力。

随着LLMs技术的进步,金融市场分析的方式正在经历变革。它们不仅提高了对市场动态的理解深度,还增强了预测的准确性,这标志着金融分析方法的一个重要进步。预计在未来,LLMs将成为推动金融市场分析方法持续演进的核心力量,帮助投资者更好地应对市场的复杂性和不确定性。通过这种方式,LLMs有望在提升投资决策质量方面扮演关键角色。

现有多代理LLM系统的探讨

当前的通用大型语言模型(LLMs)在处理金融领域的多模态数据时表现欠佳,这主要是由于它们的预训练数据集未能充分覆盖特定领域信息。因此,研究方向逐渐转向开发专门针对金融数据类型的LLM,如RiskLabs、SEP和FinAgent等系统已经证明了多LLM协同工作的潜力。然而,现有的研究面临几个挑战:首先,需要大量的数据进行训练,这对普通投资者来说成本过高;其次,这些模型依赖于预训练的知识库,容易产生所谓的“幻觉”,即生成不准确或虚构的信息;最后,这些模型往往忽视了个体投资者的风险偏好,导致投资决策缺乏个性化。

为了解决这些问题,本研究提出了一个名为FinArena的人机协作框架。该框架旨在通过部署多个LLM来分析各种类型的金融数据,并引入了一种自适应的检索增强生成(RAG)方法来应对新闻文本中可能出现的幻觉问题。此外,FinArena还设计了一个模块,允许输入投资者的风险偏好,从而实现更加个性化的投资建议。这种方法不仅促进了AI与人类之间的协作,而且有助于制定更为精准的投资决策,满足不同投资者的需求。通过这种方式,FinArena希望能够提供一种既高效又实用的解决方案,使得即使是普通投资者也能够从先进的AI技术中受益,同时确保投资策略更加贴合个人的风险承受能力。

02整体框架

概览

FinArena系统由两大部分构成:一个分析单元和三个专门设计的代理。这三个代理分别是:

  • 时间序列代理:负责处理股票的历史价格数据并预测未来的股价走势;
  • 新闻代理:能够总结新闻报道的核心内容,从中提取有价值的见解,并能访问网络资源以获取最新信息;
  • 财务报表代理:专注于分析公司的财务指标,并拥有进行迭代推理的能力,以便深入理解复杂的财务状况。

这些代理收集并处理的数据会被传递到分析单元中,在那里信息得到整合与评估。根据投资者个人的风险偏好,分析单元将综合所有代理提供的信息,生成定制化的投资建议,指导投资者何时买入或卖出股票。这种方法确保了投资决策不仅基于广泛的市场数据,同时也考虑到了个体投资者的独特需求和风险承受能力。通过这样的架构,FinArena旨在提供一种全面且个性化的金融分析工具,以支持更加明智的投资选择。

生成时间序列的代理

传统的股票价格预测方法主要依赖于诸如ARIMA、GARCH这样的数学模型,以及如XGBoost和LSTM等机器学习算法。然而,这些技术通常要求复杂的模型构建过程和特定的应用策略,这限制了它们的灵活性和广泛适用性。

相比之下,FinArena系统采用专门设计的大型语言模型(LLM)来进行时间序列分析。用户仅需提供股票的时间序列数据,系统中的代理就能据此预测未来的股票价格。该预测模型的核心在于通过最大化条件概率P来构建预测空间,其中X代表包含历史价格及其协变量的特征空间,而P则表示对未来价格变化的预测空间。

在生成预测空间P时,它遵循一个描述随时间变化率的微分方程。

一旦时间序列代理完成了预测空间P的创建,就会运用函数H将这一空间转换成一个范围从0到1的趋势输出时间序列O,用以直观地展示未来的价格走势倾向。

这种方法简化了预测流程,并使得即使是不具备深厚技术背景的用户也能轻松获取有价值的市场洞察。因此,FinArena不仅提升了预测效率,还增强了用户体验,使其成为一种更加友好且高效的金融分析工具。

不确定性驱动的自适应新闻代理

随着金融投资决策对新闻文章分析的需求日益增长,处理长篇幅的新闻内容变得尤为重要,但这一过程依然充满挑战。尽管大型语言模型(LLMs)在文本处理方面表现出色,它们在面对不熟悉的术语时可能会遇到困难。检索增强生成(RAG)方法的引入提高了信息处理的准确性、效率以及个性化水平。

在这篇文章中,我们设计了一种自适应的RAG方法,让LLM能够基于不确定性来驱动信息检索过程。这种方法使得新闻代理可以充分利用LLM的优势,同时灵活应对不断变化的新闻内容。传统信息检索系统通常依赖于静态的预训练语料库,这限制了其覆盖现代新闻动态词汇的能力。然而,过度依赖RAG技术也可能降低解决简单查询的效率,特别是对于那些寻求低成本解决方案的投资者来说,频繁调用搜索引擎API的成本可能过高。

为了应对这个问题,我们的新闻代理引入了一个判断模块(J),用于评估复杂查询是否可以通过预训练语料库直接解答。如果判断结果为0,则意味着预训练语料库足以解决问题;若返回1,则表示需要额外的信息检索支持。这种机制确保了系统的灵活性和效率。

S代表新闻代理进行的总结、分析及预测工作,而O则指向对未来股价走势的预测。通过这种方式,我们旨在创建一个既能有效利用现有资源,又能迅速适应新信息的智能系统,以更好地服务于投资者的需求。这样不仅提高了信息处理的精准度,还优化了成本效益,使之更适合广泛用户群体使用。

财务报表分析的迭代推理代理

FinArena开发了一款名为迭代推理代理(Statement Agent)的工具,专门用于深入分析公司的财务报表。这个过程分为三个阶段执行:

  • 第一步,大型语言模型(LLM)会识别出公司财务报表中潜在的季节性模式,以此来理解企业在财务健康方面的周期性变化。
  • 第二步,是将这些发现的季节性模式连同原始财务数据一同提交给另一个LLM,以便进行更为详尽的年度运营状况评估。
  • 第三步,LLM会基于前面步骤中的分析结果预测公司股票可能的价格变动趋势,并为这一预测提供一个信心评分。

输出O是从第三步得到的结果,它不仅包含了对公司股票价格长期走向的预测,还包括了LLM对这一预测的信心水平。相较于传统的思维链(CoT)微调方法,迭代推理代理能够更深入地挖掘财务报表的信息价值,并将其与自身对数据的理解相结合,从而提高了预测的可解释性和准确性。这种方法确保了分析不仅仅停留在表面,而是真正触及到数据的核心,为投资者提供了更加可靠的投资指导。通过这种方式,FinArena旨在帮助用户做出更加明智的投资决策,同时提升他们对所使用工具的信任度。

信息聚合系统与人机协作

现代金融投资决策的复杂性要求团队合作,单个决策者难以独立应对。有效的团队合作是解决超出个人能力范围的大规模问题的关键。投资决策往往通过小组协作完成,每个成员专注于不同的领域,如市场分析、风险管理和战略规划等。多智能体大型语言模型(LLMs)能够模拟这种团队合作模式,利用不同模型的优势来执行特定类型的分析任务。例如,TimeGPT擅长处理时间序列数据,而LLaMA和GPT系列则在文本分析方面表现出色。这样的组合系统可以像一个投资团队一样,承担起复杂的决策任务。

尽管如此,人类专家在投资决策过程中的角色仍然是不可替代的,因为他们能提供多代理系统无法复制的细致入微的判断、直觉以及适应能力。FinArena系统不仅促进了不同LLM代理之间的协作,还特别强调了将人类专家的知识整合进流程的重要性。这使得投资者能够积极参与到决策过程中,监督分析结果、评估各种可能性,并与AI专家进行互动交流。

报告代理提供了一个人机交互界面,让投资者可以在做出预测或接受投资建议之前表达自己的风险偏好。该系统的工作原理是将投资者的风险偏好R与输出空间O结合起来,形成个性化的投资建议A。此外,Kt作为一个状态转移修正机制,帮助调整LLM代理对人类反馈的理解,确保它们能够准确响应投资者的需求和期望。

FinArena系统突出了人机协作在处理复杂投资挑战中的重要性,保证了投资者的独特见解和风险偏好能够在最终的投资决策中得到充分考虑和体现。这种方法旨在构建一个更加灵活且响应迅速的投资决策框架,以满足多样化的市场需求和个人投资者的特定需求。

03数据集

本研究旨在通过构建一个私有数据集来弥补现有公共数据集的局限性,比如信息的相关性不高、内容陈旧或者长度不够等问题。通常,公共数据集涵盖了各种新闻主题,这可能会分散对金融因素的关注,并且往往只提供标题而缺乏必要的上下文。因此,我们决定创建一个自有的数据集,以确保信息的时效性和相关性,能够全面地捕捉到金融新闻及其对市场动态的影响。同时,考虑到小型投资者的需求,我们将数据集规模控制在一个合理的范围内,避免过大或成本过高。

实验选取了A股和美国股市作为样本空间,时间跨度从2023年1月1日至2024年3月30日,以此减少对大型语言模型(LLM)预训练数据的依赖。选择公司时,主要依据其影响力、透明度以及数据的可获取性,确保所选公司在各自行业内具有显著的地位和高水平的信息披露。在分析股票价格时,重点关注开盘价、收盘价和交易量,这些都是衡量市场表现的基本指标,便于投资者理解和使用。

财务新闻对于塑造市场情绪和指导投资决策至关重要,及时准确的信息能够让投资者在快速变化的市场环境中做出明智的选择。然而,现有的公共数据集往往缺乏针对性、时效性和主题聚焦,因此,构建一个专门的数据集可以极大地提升研究的相关性和影响力。针对A股公司,我们系统地爬取了《国家商报》网站上的相关新闻;而对于美国公司,则是从《商业今日》网站提取包含特定关键词的文章。每条新闻数据都包含了“标题”、“日期”和“文本”三个部分,在经过标准化的时间格式处理和删除无关文本之后,我们利用k-means聚类算法挑选出同一日期范围内的代表性文章。

尽管财务报表是了解公司运营状况的重要工具,但完整的报告往往非常庞大,难以高效地从中提取有价值的信息。为此,我们采用了Tsanghi API来筛选资产负债表、现金流量表和利润表中的关键财务指标,并将这些信息整合进单一输入文件中。这一过程支持了先前研究的观点,即认为仅依靠财务表格数据增加的价值相对有限1。通过这样的方法,我们的研究不仅提高了数据分析的效率,同时也增强了对市场动态的理解和预测能力。

04实验

本文旨在评估FinArena框架在股票走势预测及交易模拟方面的效能。

  • RQ1:与传统的基准相比,FinArena在预测股票运动方面表现如何。
  • RQ2:分析广泛采用非结构化数据(例如新闻资讯)对提升预测准确性的潜在优势。
  • RQ3:研究个人市场预期在多大程度上能够影响AI专家系统的决策精确度。
  • RQ4:考察FinArena的有效应用,以及个人风险偏好的不同如何作用于交易模拟的结果。

换句话说,本研究将详细检验FinArena框架相对于传统方法在股票趋势预测中的表现差异(RQ1)。此外,还会探索使用如新闻报道等非结构化数据是否能为预测带来额外的价值(RQ2)。进一步地,我们会调查个体对于市场的预期怎样影响由AI驱动的决策准确性(RQ3)。最终,研究还将分析FinArena的实际应用效果,并评估个体投资者的风险偏好对其交易模拟成效的影响(RQ4)。 这样一来,我们不仅能够了解该框架的基本性能,还能深入挖掘其在实际投资场景中的适用性和灵活性。

实验设置

在构建FinArena系统时,我们利用DeepSeek-v2模型来创建新闻代理和声明代理,专门用于处理非结构化数据;同时,采用TimeGPT模型处理历史股价数据,开发出股票代理。最终的AI专家系统则是基于gpt-4o-mini模型构建而成。

针对研究问题RQ2,我们部署了LLAMA-3-70B和Kimi模型来创建非结构化数据代理,分别负责处理英文和中文文本内容,以确保对多语言信息的有效解析和利用。

在进行股票运动预测时,AI专家系统生成二元预测结果,并通过准确率和F1分数这两种评估方法来衡量其性能表现。而在股票交易模拟过程中,根据趋势预测提供的买卖或持有建议,会考虑到四种不同的风险配置策略:保守型、中度保守型、中度激进型以及激进型。每种策略会在交易决策时分配不同比例的闲置资金,以匹配投资者的风险承受能力。

为了全面评估FinArena框架及其基线模型的表现,我们采用了多种指标,包括年化收益率、夏普比率以及最大回撤比率等关键财务指标,从而能够全面反映系统的盈利能力和风险管理水平。

换句话说,在我们的设计中,使用DeepSeek-v2作为核心组件来管理新闻和声明的数据处理,而TimeGPT则专注于历史股价分析,共同为股票预测提供支持。对于非结构化数据的处理,LLAMA-3-70B与Kimi模型分别应对英文和中文文本,增强了跨语言的数据处理能力。股票预测方面,AI专家系统提供的二元预测结果通过准确性和F1得分来进行评价。在模拟交易环节,依据风险偏好设置了从保守到激进的不同策略,并据此调整投资组合。最后,通过一系列量化指标如年化收益、夏普比率和最大回撤比率来评判整个FinArena系统及其对比模型的整体效能。

基线

在股票预测方面,我们将FinArena框架与包括ARIMA、LSTM以及TimeGPT在内的几种基准模型进行了对比分析。对于ARIMA模型,我们通过AIC和BIC准则确定差分阶数为2,并利用网格搜索来挑选最佳的滞后阶数。LSTM模型则采用了4层结构,经过了200个epoch的训练,且设置了32的批量大小以优化学习过程。另一方面,TimeGPT模型在预测收盘价变化时,将开盘价、最高价和最低价作为额外的外生变量纳入考量,以期提高预测精度。

在股票交易模拟环节中,我们不仅比较了随机策略的效果,还评估了几种特定的交易策略,比如买入上涨连续(Buy on Rising Streak Followed, BRSF)和卖出下跌连续策略。这些策略基于ARIMA和LSTM模型的预测结果被进一步检验其实际应用价值。此外,我们还增加了一组仅依赖新闻数据进行决策的实验作为基线参考,以便更全面地了解不同信息源对投资决策的影响。

所有参与对比的方法都经过了严格的评估流程,确保它们在整个数据集上展现出各自的性能特点。这种全面的性能比较有助于识别每种方法的优势和局限性,从而为投资者提供有价值的参考。通过这种方式,我们希望不仅能揭示各种模型在股票市场预测中的潜力,也能为未来的算法改进提供方向。

结果

股票走势预测

股票走势预测方面,FinArena在八个具体案例中表现出色,超越了多个基线模型,这表明采用多模态数据分析方法能够提供比单一的股票价格分析更为准确的预测结果,从而有效地回答了RQ1和RQ2中的问题。值得注意的是,Kimi和LLaMA 3相较于DeepSeek-v2显示出了一定程度的表现下滑,这可能是因为过度关注新闻的语言风格可能导致引入人类偏见,进而影响了分析的准确性。使用DeepSeek-v2时的研究发现,如果提前告知投资者市场的态度,则模型性能会有所下降,“无敏感”态度对模型性能的影响最小,这一发现为RQ3提供了答案。此外,检索增强生成(RAG)技术的应用显著提升了模型的准确性和F1分数,在A股公司中这种提升尤为明显,可能是由于这些市场中的信息复杂性更高所致。

股票交易模拟

股票交易模拟环节中,我们对FinArena与一系列基线模型进行了全面的回测,时间跨度从2024年1月1日至同年3月27日,并将结果年化以方便比较。结果显示,基于FinArena预测结果的各种策略普遍实现了高于基线模型的收益,其中M.Agg策略在年化收益率和夏普比率上表现最佳,但同时其最大回撤也最为显著。不同风险偏好的设置直接影响了投资回报率,而FinArena通过整合多种信息来源提高了最低收益水平,尽管最终的投资回报仍取决于投资者的选择。

进一步观察发现,FinArena在多股票投资场景下优于普通投资者的表现,验证了人机协作架构的有效性。例如,在Nvidia等特定股票上,“经验法则”的BRSF策略显示出了极高的平均回报(AR)和成功回报(SR)。然而,在A股市场中,尽管基准方法能够实现正收益,FinArena的投资策略却未能达到同样的效果,这部分归因于个体投资者数据集的不完整性和局限性。未来研究的一个关键方向将是探索如何利用有限或不完整的数据来提高分析和预测的准确性,以便更好地服务于小规模、低成本的投资者群体。

05讨论

FinArena在美国股市数据集上的表现超越了其他预测方法,它不仅准确率最高,而且结果的波动性也是最低的,这表明美国股市中不同数据类型所含的利润相关信息分布得相当均衡。然而,在A股市场数据集上,FinArena的表现却不尽如人意。虽然传统的机器学习模型,比如LSTM,在某些特定股票的预测上展现了一定的优势,但整体来看,这些模型的表现并不突出。

在A股市场中,信息不对称的问题尤为严重,许多公司缺乏充足的新闻报道,同时正面新闻的比例异常偏高,这种情况可能与当地的监管政策以及信息披露的限制密切相关。此外,投资策略的选择在这两个市场中都显著影响了最终的投资回报,但没有一种单一的策略能够在所有情况下都占据明显优势。这一现象揭示了市场结构、信息获取的便利程度以及投资者行为模式之间的复杂相互作用。

综上所述,尽管FinArena在美国市场的成功证明了其处理多样化数据类型的强大能力,但在面对信息环境更为复杂的A股市场时,则需要更加细致地考虑信息的特殊性和市场的独特条件。这同时也强调了在制定投资策略时,必须考虑到各个市场的特性及其对不同类型信息的不同依赖程度。

06总结

FinArena是一个开创性的人机协作框架,它利用一系列专门设计的大型语言模型(LLM)代理来执行金融数据分析和预测任务,目的是增强股票走势预测的精确度和可靠性。通过综合处理多种金融数据源——包括但不限于股票价格、新闻报道以及财务报表——FinArena在股票运动预测方面超越了传统的基准模型及先进的算法,实现了更高的准确率和F1分数。

在模拟股票交易的过程中,FinArena展示了根据不同的风险偏好调整收益的能力。适度激进的投资策略能够获得最佳的年化收益率和夏普比率,而采取保守策略则有助于更好地控制风险。这表明FinArena不仅能够适应各种投资风格的需求,还能提供相应的风险管理措施。

尽管在美国市场上表现突出,但在A股市场中,FinArena的表现却显得不稳定,这可能与信息披露的程度和数据的质量有关。这种情况凸显了市场成熟度和透明度对于多代理LLM投资模型性能的重要性。FinArena采用的多模态分析方法及其自适应机制有效地应对了传统金融建模中的诸多挑战,并为实现个性化的投资决策提供了强有力的工具支持。

展望未来,研究的重点可以放在提升模型对不同市场条件的适应能力上,尤其是在新兴市场中改善数据质量,并探索更多种类的多模态数据源,以进一步优化投资决策过程。这样的努力将有助于扩大FinArena的应用范围,并提高其在全球金融市场中的适用性和有效性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值