如何使用OpenCV Python中的Sobel和Laplacian导数查找图像梯度?

本文介绍了如何利用OpenCV库在Python中使用Sobel和Laplacian算子计算图像的梯度。通过设置不同参数,可以计算水平和垂直方向的1阶导数,并展示了相关示例代码及其输出效果。
摘要由CSDN通过智能技术生成

 使用Sobel算子,我们可以在水平方向和垂直方向上计算图像梯度。梯度是针对灰度图像计算的。Laplacian算子使用二阶导数计算梯度。

语法

使用以下语法使用Sobel和Laplacian导数计算图像梯度 −

cv2.Sobel(img, ddepth, xorder, yorder, ksize)
cv2.Laplacian(img, ddepth)

参数

  • img − 原始输入图像。

  • ddepth − 输出图像的所需深度。它包含有关输出图像中存储的数据类型的信息。我们使用 cv2.CV_64F 作为ddepth。这是一个64位浮点数形式的OpenCV。

  • xorder − 水平方向(X方向)中的导数阶数。将 xorder=1 和 yorder=0 设置为X方向上的1阶导数。

  • yorder − 垂直方向(Y方向)中的导数阶数。将xorder=0,yorder=1设置为y方向上的1阶导数。

  • ksize − 内核大小。将ksize=5设置为5×5内核大小。

步骤

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值