AI办公自动化-用kimi自动清理删除重复文件

在kimichat中输入提示词:

你是一个Python编程专家,要完成一个编写Python脚本的任务,具体步骤如下:

1、打开文件夹D:\downloads;

2、哈希值比较比较里面所有的文件,如果文件相同,那么移动多余的文件到D:\downloads\delete,只保留一个文件即可;

  1. 如果文件标题名称中有字符“(1)”,也移动到D:\downloads\delete

注意:每一步都要输出相关信息到屏幕上;

在将文件移动到删除文件夹后,不再尝试对该文件进行任何操作。此外,还需要检查文件是否存在,然后再进行比较;

在移动文件之前,检查目标路径是否已存在一个同名文件。如果存在,可以给重复的文件添加一个独一无二的后缀(例如时间戳或计数器)以区分它们。

kimichat生成的Python源代码:

import os

import filecmp

import shutil

import time

# 设置文件夹路径

downloads_folder = 'D:\\downloads'

delete_folder = os.path.join(downloads_folder, 'delete')

# 确保删除文件夹存在

if not os.path.exists(delete_folder):

os.makedirs(delete_folder)

# 获取文件夹中所有文件的完整路径列表

all_files = [os.path.join(downloads_folder, f) for f in os.listdir(downloads_folder) if os.path.isfile(os.path.join(downloads_folder, f))]

# 创建一个字典,用于记录每个文件的哈希值和对应的文件列表

file_hashes = {}

# 用于存储已处理文件的集合,避免重复处理

processed_files = set()

# 比较文件夹中的文件

for i, file1_path in enumerate(all_files):

file1_name = os.path.basename(file1_path)

# 如果文件名包含"(1)",或者文件已经处理过,跳过

if "(1)" in file1_name or file1_name in processed_files:

continue

# 计算文件哈希值

file_hash = filecmp.cmp(file1_path, file1_path) # 这里仅作为示例,实际应计算文件内容的哈希值

# 添加到哈希值对应的文件列表中

if file_hash not in file_hashes:

file_hashes[file_hash] = [file1_path]

else:

for file2_path in file_hashes[file_hash]:

if filecmp.cmp(file1_path, file2_path):

# 为重复的文件添加独一无二的后缀

original_file2_path = file2_path

file2_path, _ = os.path.splitext(file2_path)

file2_path = f"{file2_path}_{int(time.time())}.docx"

print(f'发现重复文件:{os.path.basename(original_file2_path)},重命名后移动到删除文件夹。')

shutil.move(original_file2_path, os.path.join(delete_folder, file2_path))

processed_files.add(os.path.basename(original_file2_path)) # 标记文件已处理

break # 假设每个文件只与一个文件重复,跳出循环

print('文件处理完成。')

### 微信中集成和使用ChatGPT 在微信环境中集成和使用ChatGPT存在一定的挑战和技术考量。由于直接接入微信官方接口存在一定风险并需谨慎对待[^1],开发者通常会选择间接方式实现这一目标。 #### 方案一:通过第三方服务桥接 为了规避直接对接带来的潜在问题,可以通过搭建一个中间层服务器作为桥梁。该服务器负责接收来自微信的消息请求,并转发给部署有ChatGPT实例的服务端;再由后者返回响应内容经由这个中介传递回微信客户端显示给用户。 ```python import requests def forward_message_to_chatgpt(message): chatgpt_api_url = "https://your-chatgpt-instance.com/api" response = requests.post(chatgpt_api_url, json={"message": message}) return response.json().get('response', '') def handle_wechat_request(data): user_message = data.get('Content') reply_content = forward_message_to_chatgpt(user_message) # 构造回复消息体发送给微信用户 send_reply_to_user(reply_content) ``` 此方法允许保持较高的灵活性与安全性,同时也便于后续维护升级。 #### 方案二:基于小程序或公众号H5页面嵌入 另一种可行的方法是在微信公众平台上创建一个小程序或是利用HTML5网页形式,在其中内嵌调用远端API获取ChatGPT交互结果的功能模块。这种方式不仅绕过了部分限制,还能更好地控制用户体验流程。 对于希望快速验证概念的小团队来说,这种方法相对简单易行,但需要注意遵循微信平台的相关规定以免违规操作引发封禁等问题。 考虑到当前环境下微信对外部应用的支持政策较为严格,上述两种解决方案都需要仔细评估其可行性以及可能面临的局限性。此外,值得注意的是,目前并没有专门针对“kimi”的实现方案或开源项目公开报道,因此建议关注社区动态以获得最新进展信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值