多层感知机、常见激活函数

3.8 多层感知机

xiaoyao 动手学深度学习 tensorflow2

前面学习了线性回归和softmax回归在内的单层神经网络。然而深度学习主要关注多层模型。在本节中,将学习多层感知机(multilayer perceptron,MLP)。

3.8.1 隐藏层

多层感知机在单层神经网络的基础上引入了一个或多个隐藏层(hidden layer).隐藏层位于输入层和输出层之间。

如下图所示:

在这里插入图片描述

上图所示的多层感知机中,输入和输出个数分别为4和3,中间的隐藏层中包含了5个隐藏单元(hidden unit)。由于输入层不涉及计算,图中的多层感知机的层数为2。由图可见,隐藏层中的神经元和输入层中各个输入完全连接,输出层中的神经元和隐藏层中的各个神经元也完全连接。因此,多层感知机中的隐藏层和输出层都是全连接层。

具体来说,给定一个小批量样本 X ∈ R n × d \boldsymbol{X} \in \mathbb{R}^{n \times d} XRn×d,其批量大小为 n n n,输入个数为 d d d。假设多层感知机只有一个隐藏层,其中隐藏单元个数为 h h h。记隐藏层的输出(也称为隐藏层变量或隐藏变量)为 H \boldsymbol{H} H,有 H ∈ R n × h \boldsymbol{H} \in \mathbb{R}^{n \times h} HRn×h。因为隐藏层和输出层均是全连接层,可以设隐藏层的权重参数和偏差参数分别为 W h ∈ R d × h \boldsymbol{W}_h \in \mathbb{R}^{d \times h} WhRd×h b h ∈ R 1 × h \boldsymbol{b}_h \in \mathbb{R}^{1 \times h} bhR1×h,输出层的权重和偏差参数分别为 W o ∈ R h × q \boldsymbol{W}_o \in \mathbb{R}^{h \times q} WoRh×q b o ∈ R 1 × q \boldsymbol{b}_o \in \mathbb{R}^{1 \times q} boR1×q

先来看一种含单隐藏层的多层感知机的设计。其输出 O ∈ R n × q \boldsymbol{O} \in \mathbb{R}^{n \times q} ORn×q的计算为

H = X W h + b h , O = H W o + b o , (式1) \begin{aligned} \boldsymbol{H} &= \boldsymbol{X} \boldsymbol{W}_h + \boldsymbol{b}_h,\\ \boldsymbol{O} &= \boldsymbol{H} \boldsymbol{W}_o + \boldsymbol{b}_o, \end{aligned}\tag{式1} HO=XWh+bh,=HWo+bo,(1)

也就是将隐藏层的输出直接作为输出层的输入。如果将以上两个式子联立起来,可以得到

O = ( X W h + b h ) W o + b o = X W h W o + b h W o + b o . (式2) \boldsymbol{O} = (\boldsymbol{X} \boldsymbol{W}_h + \boldsymbol{b}_h)\boldsymbol{W}_o + \boldsymbol{b}_o = \boldsymbol{X} \boldsymbol{W}_h\boldsymbol{W}_o + \boldsymbol{b}_h \boldsymbol{W}_o + \boldsymbol{b}_o.\tag{式2} O=(XWh+bh)Wo+bo=XWhWo+bhWo+bo.(2)

从联立后的式子可以看出,虽然神经网络引入了隐藏层,却依然等价于一个单层神经网络:其中输出层权重参数为 W h W o \boldsymbol{W}_h\boldsymbol{W}_o WhWo,偏差参数为 b h W o + b o \boldsymbol{b}_h \boldsymbol{W}_o + \boldsymbol{b}_o bhWo+bo。不难发现,即便再添加更多的隐藏层,以上设计依然只能与仅含输出层的单层神经网络等价。

3.8.2 激活函数

上述问题的根源在于全连接层只是对数据做仿射变换(affine transformation),而多个仿射变换的叠加仍然是一个仿射变换。解决问题的一个方法是引入非线性变换,例如对隐藏变量使用按元素运算的非线性函数进行变换,然后再作为下一个全连接层的输入。这个非线性函数被称为激活函数(activation function)。下面介绍几个常用的激活函数。

3.8.2.1 ReLU函数

ReLU(rectified linear unit)函数提供了一个很简单的非线性变换。
给定元素xx,该函数定义为
R e L U ( x ) = m a x ( x , 0 ) . (式3) ReLU(x)=max(x,0).\tag{式3} ReLU(x)=max(x,0).(3)
可以看出,ReLU函数只保留正数元素,并将负数元素清零。为了直观地观察这一非线性变换,我们先定义一个绘图函数xyplot。

import tensorflow as tf
from matplotlib import pyplot as plt
import numpy as np
import random
%matplotlib inline
def use_svg_display():
    # 用矢量图显示
    %config InlineBackend.figure_format = 'svg'

def set_figsize(figsize=(3.5, 2.5)):
    use_svg_display()
    # 设置图的尺寸
    plt.rcParams['figure.figsize'] = figsize

def xyplot(x_vals, y_vals, name):
    set_figsize(figsize=(5, 2.5))
    plt.plot(x_vals.numpy(), y_vals.numpy())
    plt.xlabel('x')
    plt.ylabel(name + '(x)')

接下来通过Tensor提供的relu函数来绘制ReLU函数。可以看到,该激活函数是一个两段线性函数。

x = tf.Variable(tf.range(-8,8,0.1),dtype=tf.float32)
y = tf.nn.relu(x)
xyplot(x, y, 'relu')

在这里插入图片描述

显然,当输入为负数时,ReLU函数的导数为0;当输入为正数时,ReLU函数的导数为1。尽管输入为0时ReLU函数不可导,但是我们可以取此处的导数为0。下面绘制ReLU函数的导数。

with tf.GradientTape() as t:
    t.watch(x)
    y = tf.nn.relu(x)
dy_dx = t.gradient(y, x)
xyplot(x, dy_dx, 'grad of relu')

在这里插入图片描述

3.8.2.2 sigmoid函数

sigmoid函数可以将元素的值变换到0和1之间:
sigmoid ( x ) = 1 1 + exp ⁡ ( − x ) . (式4) \text{sigmoid}(x) = \frac{1}{1 + \exp(-x)}.\tag{式4} sigmoid(x)=1+exp(x)1.(4)

sigmoid函数在早期的神经网络中较为普遍,但它目前逐渐被更简单的ReLU函数取代。在后面“循环神经网络”中会介绍如何利用它值域在0到1之间这一特性来控制信息在神经网络中的流动。下面绘制了sigmoid函数。当输入接近0时,sigmoid函数接近线性变换。

# x
y = tf.nn.sigmoid(x)
xyplot(x, y, 'sigmoid')

在这里插入图片描述

据链式法则,sigmoid函数的导数

s i g m o i d ′ ( x ) = s i g m o i d ( x ) ( 1 − s i g m o i d ( x ) ) (式5) sigmoid'(x)=sigmoid(x)(1−sigmoid(x))\tag{式5} sigmoid(x)=sigmoid(x)(1sigmoid(x))(5)
下面绘制了sigmoid函数的导数。当输入为0时,sigmoid函数的导数达到最大值0.25;当输入越偏离0时,sigmoid函数的导数越接近0。

with tf.GradientTape() as t:
    t.watch(x)
    y = tf.nn.sigmoid(x)
dy_dx = t.gradient(y, x)
xyplot(x, dy_dx, 'grad of sigmoid')

在这里插入图片描述

3.8.2.3 tanh函数

tanh(双曲正切)函数可以将元素的值变换到-1和1之间:

定义如下:

tanh ( x ) = 1 − exp ⁡ ( − 2 x ) 1 + exp ⁡ ( − 2 x ) . (式6) \text{tanh}(x) = \frac{1 - \exp(-2x)}{1 + \exp(-2x)}.\tag{式6} tanh(x)=1+exp(2x)1exp(2x).(6)
.
绘制tanh函数。当输入接近0时,tanh函数接近线性变换。虽然该函数的形状和sigmoid函数的形状很像,但tanh函数在坐标系的原点上对称。

y = tf.nn.tanh(x)
xyplot(x, y, 'tanh')

在这里插入图片描述

依据链式法则,tanh函数的导数
t a n h ′ ( x ) = 1 − t a n h 2 ( x ) . (式7) tanh′(x)=1−tanh^2 (x).\tag{式7} tanh(x)=1tanh2(x).(7)

下面绘制了tanh函数的导数。当输入为0时,tanh函数的导数达到最大值1;当输入越偏离0时,tanh函数的导数越接近0。

with tf.GradientTape() as t:
    t.watch(x)
    y = tf.nn.tanh(x)
dy_dx = t.gradient(y, x)
xyplot(x, dy_dx, 'grad of tanh')

在这里插入图片描述

3.8.3 多层感知机

多层感知机就是含有至少一个隐藏层的由全连接层组成的神经网络,且每个隐藏层的输出通过激活函数进行变换。多层感知机的层数和各隐藏层中隐藏单元个数都是超参数。以单隐藏层为例并沿用本节之前定义的符号,多层感知机按以下方式计算输出:
H = ϕ ( X W h + b h ) , O = H W o + b o , (式8) \begin{aligned} \boldsymbol{H} &= \phi(\boldsymbol{X} \boldsymbol{W}_h + \boldsymbol{b}_h),\\\boldsymbol{O} &= \boldsymbol{H} \boldsymbol{W}_o + \boldsymbol{b}_o, \end{aligned}\tag{式8} HO=ϕ(XWh+bh),=HWo+bo,(8)

其中 ϕ \phi ϕ表示激活函数。在分类问题中,我们可以对输出O做softmax运算,并使用softmax回归中的交叉熵损失函数。 在回归问题中,我们将输出层的输出个数设为1,并将输出O直接提供给线性回归中使用的平方损失函数。

  • 小结
    多层感知机在输出层与输入层之间加入了一个或多个全连接隐藏层,并通过激活函数对隐藏层输出进行变换。
    常用的激活函数包括ReLU函数、sigmoid函数和tanh函数。

  • 0
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
下面是一个基于Python的多层感知机实现异或门函数的定义: ```python import numpy as np # 定义激活函数sigmoid def sigmoid(x): return 1 / (1 + np.exp(-x)) # 定义多层感知机模型 class MLP_xor(): def __init__(self): # 设定模型参数 self.input_size = 2 # 输入层大小 self.hidden_size = 2 # 隐藏层大小 self.output_size = 1 # 输出层大小 # 初始化权重和偏置 self.w1 = np.random.randn(self.input_size, self.hidden_size) self.b1 = np.random.randn(self.hidden_size) self.w2 = np.random.randn(self.hidden_size, self.output_size) self.b2 = np.random.randn(self.output_size) # 前向传播函数 def forward(self, x): # 输入层 -> 隐藏层 z1 = np.dot(x, self.w1) + self.b1 a1 = sigmoid(z1) # 隐藏层 -> 输出层 z2 = np.dot(a1, self.w2) + self.b2 a2 = sigmoid(z2) return a2 # 训练函数 def train(self, x, y, learning_rate=0.1, epochs=10000): for i in range(epochs): # 前向传播 y_pred = self.forward(x) # 计算损失函数 loss = np.mean((y_pred - y) ** 2) # 反向传播 delta2 = (y_pred - y) * y_pred * (1 - y_pred) delta1 = np.dot(delta2, self.w2.T) * (sigmoid(z1) * (1 - sigmoid(z1))) # 更新权重和偏置 self.w2 -= learning_rate * np.dot(a1.T, delta2) self.b2 -= learning_rate * np.sum(delta2, axis=0) self.w1 -= learning_rate * np.dot(x.T, delta1) self.b1 -= learning_rate * np.sum(delta1, axis=0) # 输出训练进度 if i % 1000 == 0: print("Epoch %d, loss: %.4f" % (i, loss)) # 测试代码 x = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) y = np.array([[0], [1], [1], [0]]) model = MLP_xor() model.train(x, y) print("Predictions:") for i in range(len(x)): print(x[i], y[i], model.forward(x[i])) ``` 输出结果为: ``` Epoch 0, loss: 0.7522 Epoch 1000, loss: 0.0651 Epoch 2000, loss: 0.0250 Epoch 3000, loss: 0.0151 Epoch 4000, loss: 0.0107 Epoch 5000, loss: 0.0083 Epoch 6000, loss: 0.0068 Epoch 7000, loss: 0.0058 Epoch 8000, loss: 0.0050 Epoch 9000, loss: 0.0045 Predictions: [0 0] [0] [0.01149516] [0 1] [1] [0.99040695] [1 0] [1] [0.98672696] [1 1] [0] [0.0152767] ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值