隐私保护与生成模型: 差分隐私GAN的梯度脱敏方法

点击蓝字关注我们AI TIME欢迎每一位AI爱好者的加入!大规模数据的收集和利用大幅提升了机器学习算法的性能,但同时也令个人隐私保护面临更大的风险与挑战。为此,我们提出一种满足差分隐私(...
摘要由CSDN通过智能技术生成

点击蓝字

关注我们

AI TIME欢迎每一位AI爱好者的加入!

大规模数据的收集和利用大幅提升了机器学习算法的性能,但同时也令个人隐私保护面临更大的风险与挑战。为此,我们提出一种满足差分隐私(Differential Privacy)的生成对抗网络(GAN) 训练方法,用于拟合高维数据分布、生成具有严格隐私保护的数据集。我们的框架适用于集成式(centralized) 和分布式/联邦式(decentralized/federated)环境。实验表明,我们的方法可以提高生成样本的准确性,并在多个指标(例如样品视觉质量,通信效率)取得了最优的性能。

陈丁凡:本科毕业于德国图宾根大学计算机系,现为德国CISPA亥姆霍兹信息安全中心的博士生,导师为Mario Fritz。主要研究方向为机器学习(差分)隐私,以及深度生成模型。

一、差分隐私是什么?

这篇文章以差分隐私和生成模型为主要研究对象,针对面临的问题,先介绍相关的背景知识和现有研究方法,后展示解决方案和实验结果。

机器学习模型的训练需要大量的数据喂食,而这些数据的应用就会涉及到个人隐私的问题。而随着数据规模越来越大,隐私问题也获得了更多的关注,而如何保护隐私也逐渐成为了比较热门的研究方向。一个直观的想法是能否利用生成模型来生成数据,既满足了隐私保障,不损害用户的个人隐私,也能满足模型训练对于数据规模的需求,还可以通过机器学习算法的验证。因此这篇文章的主要任务就是实现privacy preserving data generation,即隐私保护的数据生成,具体来说就是结合了差分隐私(differential privacy)和生成对抗网络(GAN),其中差分隐私可以提供严格的隐私保障,而GAN可以用于拟合数据分布,特别是拟合高维数据的数据分布。与传统的privacy preserving data generation方法需要对后续任务做假设相比,使用基于神经网络的生成模型可以避免对后续的任务做假设。鉴于传统方法往往只能处理简单的后续任务,使用GAN可以很好的避免这个局限。

综上所述,本文提出了一个满足差分隐私定义的生成模型训练方法,这个方法能够获得带有隐私保障的生成模型,进而获得生成数据。生成的数据可以用于后续的一系列操作和任务,例如训练机器学习模型,而且又不会损害个人隐私。

首先,我们来了解一下差分隐私的概念。差分隐私是目前机器学习领域用的最广

  • 3
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值