点击蓝字
关注我们
AI TIME欢迎每一位AI爱好者的加入!
在现实世界中,许多动态系统都可以抽象为时序网络,这些网络通常按照某些规律发展,比如在社会网络中普遍存在的Triadic closure。时序网络通过归纳表征学习可以捕捉到这样的规律,并进一步将其应用于遵循相同规律但在训练阶段未曾见过的系统。这一领域的先前工作依赖于网络节点的身份或丰富的边缘属性,但通常这些规律很难被提取到。在《Inductive Representation Learning in Temporal Networks via Causal Anonymous Walks》一文中,作者提出采用Causal Anonymous Walks(CAWs)代表一个时间网络。
CAWs由temporal random walks提取,作为temporal network motifs的自动检索来表示网络动态,同时避免了对motifs进行耗时的选择和计数。CAWs采用了一种新的匿名化策略,用基于一组抽样行走的节点的命中率计数代替节点身份,以保持方法的归纳性,并同时建立了motifs之间的关联性。作者进一步提出了一个神经网络模型CAW-N来编码CAWs,并将其与具有恒定内存和时间成本的CAW采样策略配对,以支持在线训练和推理。
作者通过预测6个真实时序网络中的链接对CAW-N进行了评估,结果表明,预测结果在不同的模式下以平均10%的AUC增益优于以前的SOTA方法。另外,在2/3的网络中,CAW-N模型所得到的结果也优于以前的方法。
本期AI TIME PhD直播间,我们有幸邀请到了该论文的作者,现就读于康奈尔大学的博士生王彦邦,为大家分享这项有趣的研究工作!
# 嘉宾介绍 #
王彦邦:
斯坦福大学计算机科学硕士,康奈尔大学计算机科学博士生。研究兴趣:图的机器学习、数据挖掘、计算社会科学和大数据分析。目前在Stanford Social Network Analysis Group工作,由Jure Leskovec和Pan Li教授指导。曾在NeurIPS、ICLR、WWW、TVCG、LAK等国际顶级会议和期刊上发表多篇论文。
#1
什么是时序网络?