torchsparse安装

Ubuntu系统

方法一:执行命令:

sudo apt-get install libsparsehash-dev
pip install --upgrade git+https://github.com/mit-han-lab/torchsparse.git@v1.4.0

方法二:离线安装;首先进入该网站下载自己所需版本,mit-han-lab/torchsparse: A high-performance neural network library for point cloud processing. (github.com)

将下载好的torchsparse.tar.gz上传至项目目录中

解压:tar zxvf torchsparse版本号.tar.gz

然后安装,执行命令:pip install ./torchsparse版本号

安装失败时所遇到的坑,帮大家排雷

1.确保 PyTorch 和 NVCC 使用相同版本的 CUDA:

nvcc --version
python -c "import torch; print(torch.version.cuda);"

需要确保为同一版本CUDA。

2.如果您尝试交叉编译库(即在构建时为与系统中的 GPU 不同的 GPU 进行编译,例如在 docker 构建中),请使用 TORCH_CUDA_ARCH_LIST 环境变量。您可以使用Matching CUDA arch and CUDA gencode for various NVIDIA architectures - Arnon Shimoni来查找您的architecture/gencode。例如,如果你想为图灵架构 GPU 进行编译,你会这样做:

TORCH_CUDA_ARCH_LIST="7.0;7.5" pip install --upgrade git+https://github.com/mit-han-lab/torchsparse版本号.git

3.如果您在编译日志中看到 Killed,则可能是由于并行编译导致内存不足导致编译失败。您可以通过在安装前设置 MAX_JOBS 环境变量来限制编译器将使用的 CPU 数量:

MAX_JOBS=2 pip install --upgrade git+https://github.com/mit-han-lab/torchsparse版本号.git
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值