快速了解机器学习中LogisticRegression里的五种solver优化参数(超详细)

本文比较了逻辑回归中不同优化算法(liblinear,newton-cg,lbfgs,Sag,Saga)的特性,强调liblinear适用于小数据集,而sag/saga适用于大数据且速度快。多分类问题中,newton-cg,sag,saga,lbfgs适用于多项损失,liblinear限于OvR。考虑正则化和样本规模,选择算法需综合考量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

Solver:

liblinear:

newton-cg:

Lbfgs:

Sag:

Saga:

总结:


Solver:

优化算法选择参数,只有五个可选参数,即newton-cg,lbfgs,liblinear,sag,saga。默认为liblinear。solver参数决定了我们对逻辑回归损失函数的优化方法,有四种算法可以选择,分别是:

liblinear:

使用坐标轴下降法来迭代优化损失函数。使用了开源的liblinear库实现,内部使用了坐标轴下降法来迭代优化损失函数。

newton-cg:

牛顿法,sag方法使用一阶导数,而牛顿法采用了二阶泰勒展开,这样缩减了迭代轮数,但是需要计算Hsssian矩阵的逆,所以计算复杂度较高。【也是牛顿法家族的一种,利用损失函数二阶导数矩阵即海森矩阵来迭代优化损失函数。】

Lbfgs:

拟牛顿法,考虑到牛顿法的Hessian矩阵求逆太过复杂,尤其在高维问题中几乎不可行,想到了用较低的代价寻找Hessian矩阵的近似逆矩阵,便有了拟牛顿法。【拟牛顿法的一种,利用损失函数二阶导数矩阵即海森矩阵来迭代优化损失函数。】

Sag:

即随机平均梯度下降,类似于我们的stocGradAscent1函数,思想是常用的一阶优化方法,是求解无约束优化问题最经典,最简单的方法之一。【即随机平均梯度下降,是梯度下降法的变种,和普通梯度下降法的区别是每次迭代仅仅用一部分的样本来计算梯度,适合于样本数据多的时候。】

Saga:

线性收敛的随机优化算法。【线性收敛的随机优化算法的的变种。】

总结:

liblinear适用于小数据集,而sag和saga适用于大数据集因为速度更快。

对于多分类问题,只有newton-cg,sag,saga和lbfgs能够处理多项损失,而liblinear受限于一对剩余(OvR)。啥意思,就是用liblinear的时候,如果是多分类问题,得先把一种类别作为一个类别,剩余的所有类别作为另外一个类别。依次类推,遍历所有类别,进行分类。newton-cg,sag和lbfgs这三种优化算法时都需要损失函数的一阶或者二阶连续导数,因此不能用于没有连续导数的L1正则化,只能用于L2正则化。而liblinear和saga通吃L1正则化和L2正则化。

同时,sag每次仅仅使用了部分样本进行梯度迭代,所以当样本量少的时候不要选择它,而如果样本量非常大,比如大于10万,sag是第一选择。但是sag不能用于L1正则化,所以当你有大量的样本,又需要L1正则化的话就要自己做取舍了。要么通过对样本采样来降低样本量,要么回到L2正则化。

从上面的描述,大家可能觉得,既然newton-cg, lbfgs和sag这么多限制,如果不是大样本,我们选择liblinear不就行了嘛!错,因为liblinear也有自己的弱点!我们知道,逻辑回归有二元逻辑回归和多元逻辑回归。对于多元逻辑回归常见的有one-vs-rest(OvR)和many-vsmany(MvM)两种。而MvM一般比OvR分类相对准确一些。郁闷的是liblinear只支持OvR,不支持MvM,这样如果我们需要相对精确的多元逻辑回归时,就不能选择liblinear了。也意味着如果我们需要相对精确的多元逻辑回归不能使用L1正则化了。

### 回答1: 对于logisticregression().fit参数,它是一种机器学习算法,常用来拟合分类数据。它的参数包括:训练集 (X)、标签 (y)、正则化参数 (C)优化算法 (solver)、收敛阈值 (tol)、随机状态 (random_state) 和拟合模型 (fit_intercept)。 ### 回答2: 在机器学习中,逻辑回归是一种用于分类问题的算法。在Python中,我们可以使用sklearn库中的logisticregression()方法来创建和训练逻辑回归模型。 fit()logisticregression()方法中的一个参数,它用于拟合(训练)模型。在使用fit()方法时,我们需要提供训练集的特征(自变量)和目标变量(因变量)。 fit()的作用是根据提供的训练数据,调整模型的参数以最好地拟合数据并尽可能准确地预测目标变量。它通过最小化成本函数(损失函数)来实现这一点,该函数衡量模型的预测与实际结果之间的差异。 在实际使用中,我们首先使用fit()方法传递训练集的特征和目标变量来训练模型。然后,模型将根据这些数据学习到最佳的参数。一旦模型完成拟合,我们就可以使用该模型进行预测,传递测试集的特征就能够得到预测的目标变量。 综上所述,fit()参数logisticregression()方法中用于训练模型的一个重要参数,它通过最小化成本函数来调整模型的参数以拟合并预测目标变量。 ### 回答3: logistic regression()函数中的fit参数指的是模型的拟合方法。在logistic regression中,fit参数用于拟合模型,即通过给定的训练集数据来找到最佳的参数,以拟合数据并建立一个适应的逻辑回归模型。 在fit参数中,我们通常需要传入两个重要参数,包括特征矩阵X和目标变量y。特征矩阵X是一个二维矩阵,每一行代表一个样本,每一列代表一个特征。而目标变量y则是一个一维数组,包含了与特征矩阵中每个样本对应的目标值。 当我们调用fit方法时,模型会根据给定的训练集数据进行训练,并通过最小化损失函数来找到使模型预测值与实际目标值最接近的参数。在逻辑回归中,我们使用的损失函数通常是对数损失函数(log loss)。 在fit过程中,模型会进行迭代优化,通过梯度下降等方法来不断调整参数,使损失函数最小化。训练结束后,模型的参数将会得到更新,即拟合到训练集数据的最佳参数值。 总之,fit参数在logistic regression中用于拟合模型,通过训练集数据来找到最佳的参数,建立适应的逻辑回归模型。它是logistic regression中一个重要的方法,用于进行模型的训练和优化
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值