- 博客(37)
- 收藏
- 关注
原创 Linux笔记3
1、Httpd服务1、先检查本机的httpd服务是否开启,使用命令:service --status-all | grep httpd2、开启httpd服务Service httpd start/stop/restart/status为确保是否开启成功,请再重新检查一次3、我们进入到/var/www/html目录下,新建一个huangbo.html文件,往文件里加入一个字符串”huan...
2021-12-08 14:22:22 810
原创 Linux笔记2
1、VI文本编辑器学会使用vi编辑器是学习Linux系统的必备技术之一,因为一般的Linux服务器是没有GUI界面的,Linux运维及开发人员基本上都是通过命令行的方式进行文本编辑或程序编写的。vi编辑器是Linux内置的文本编辑器,几乎所有的类unix系统中都内置了vi编辑器,而其它编辑器则不一定,另外很多软件会调用vi编辑进行内容编写,例如crontab定时任务。较之于其它编辑器或GUI编辑...
2021-12-08 14:19:32 369
原创 linux笔记1
Linux文件系统linux系统的硬盘分区管理相关概念:对于Linux的分区通常可以使用fdisk命令工具和parted工具对于分区表通常有MBR分区表和GPT分区表对于磁盘大小小于2T的磁盘,我们可以使用fdisk和parted命令工具进行分区对于MBR分区表的特点(通常使用fdisk命令进行分区)所支持的最大磁盘大小:2T最多支持4个主分区或者是3个主分区加上一个扩展分区对于GPT分区表的特点(使用parted命令进行分区)支持最大卷:18EB(1EB=1024TB)最多支持128个
2021-12-08 14:13:23 263
原创 HBase笔记1
shell命令进入hbase的命令行客户端:hbase shellhelp 查看帮助文档Group name: generalCommands: status, table_help, version, whoamiGroup name: ddlCommands: alter, alter_async, alter_status, create, describe, disable,...
2019-09-14 18:54:55 223
原创 MySQL笔记6
1)视图:视图是一张虚拟表,并不在数据库中以存储数据值集的形式存在;在引用过程中依据基表动态生成Create or replace view 视图名As–查询语句2)with check option如果创建的视图中带有where等条件,则with check option 子句可以保证让你只能在视图的条件之内对视图进行DML3) 删除视图:drop view 视图名4) 视图的优...
2019-09-14 18:47:45 128
原创 MySQL笔记5
存储引擎(show ENGINES;)数据库存储引擎是数据库底层软件组织,数据库管理系统(DBMS)使用数据引擎进行创建、查询、更新和删除数据。不同的存储引擎提供不同的存储机制、索引技巧、锁定水平等功能,使用不同的存储引擎,还可以获得特定的功能。Mysql的核心就是存储引擎。InnoDB是事务型数据库的首选,执行安全性数据库,行锁定和外键。mysql5.5之后默认使用。MyISAM插入速度和...
2019-09-14 18:47:08 126
原创 MySQL笔记4
事务(分类:自动提交事务,显式事务,隐性事务)概念:保证数据的一致性,由一组dml语句组成,这些dml要么全部执行,要么全部不执行。2、特征(特性):原子性(A):事务中执行的操作(原子),要么全部执行,要么全部不执行 ,不能分割。一致性©:事务执行前和事务执行后数据一致的隔离性(I): 并发事务之间彼此隔离的,互不影响。持久性(D): 执行成功之后数据是永久保存.3、并发事务出现...
2019-09-14 18:46:23 119
原创 MySQL笔记3
需求:查询员工的姓名和部门名称A: 笛卡尔积(了解 )Selet * from A,B;A 2条 B 3条 结果:2*3= 6条B:内连查询(主外键等值的结果) 表的先后顺序无关#修改表名RENAME table 原表名 to 新表名;1种 where实现内连查询#查询学生的姓名和班级名称select s.sname,c.cname from student s,cla...
2019-09-14 18:45:44 119
原创 MySQL笔记2
2、实体完整性约束(约束行数据,记录 )A: 主键约束 primary key#第一种CREATE TABLE student1(sid int primary key,sname VARCHAR(20),gender char(1), #0 1age int);#第二种CREATE TABLE student2(sid int,sname VARCHAR(20),...
2019-09-14 18:42:35 141
原创 MySQL笔记1
1、什么是sql(structured query language)结构化查询语言2、sql分类(四类):① DDL:数据定义语言create/alter/drop② DML:数据的操作语言Insert /update /delete select (DQL)③ DCL:数据的控制语言grant revoke④ TCL:数据的事务处理commit rollback1...
2019-09-14 18:39:42 141
原创 支持向量机
##支持向量机import numpy as npimport pandas as pdfrom sklearn.datasets import load_irisfrom sklearn import svm#1.导入数据#data = pd.read_csv(’’)#2.数据预处理#略,最终生成x_train,y_train,x_test#此处导入鸢尾花数据x_train,...
2019-09-12 10:21:41 117
原创 随机森林
##随机森林-分类from sklearn.ensemble import RandomForestClassifierfrom sklearn.datasets import make_classification#1.导入数据#data = pd.read_csv(’’)#2.数据预处理#略,最终生成x_train,y_train,x_test#导入sklearn的数据集x_t...
2019-09-12 10:19:27 210 1
原创 DBSCAN聚类
##DBSCANimport numpy as npimport pandas as pdfrom sklearn.cluster import DBSCAN#1.导入数据#data = pd.read_csv(’’)#2.数据预处理#略,最终生成x_train,x_testx_train = np.array([[1, 2, 3], [1, 4, 6], [1, 0, 9], [...
2019-09-12 10:18:41 553
原创 K-means聚类
##K-meansimport numpy as npimport pandas as pdfrom sklearn.cluster import KMeans#1.导入数据#data = pd.read_csv(’’)#2.数据预处理#略,最终生成x_train,x_testx_train = np.array([[1, 2, 3], [1, 4, 6], [1, 0, 9...
2019-09-12 10:18:09 218
原创 朴素贝叶斯
##朴素贝叶斯import numpy as npimport pandas as pdfrom sklearn.datasets import load_irisfrom sklearn.naive_bayes import GaussianNB#1.导入数据#data = pd.read_csv(’’)#2.数据预处理#略,最终生成x_train,y_train,x_test...
2019-09-12 10:17:16 302
原创 线性回归
##线性回归import numpy as npimport pandas as pdfrom sklearn.linear_model import LinearRegression#1.导入数据#data = pd.read_csv(’’)#2.数据预处理#略,最终生成x_train,y_train,x_test#此处用随机生成数据#数据量mm = 20#特征数nn =...
2019-09-12 10:16:38 146
原创 Adaboost-分类
##Adaboost-分类from sklearn.ensemble import AdaBoostClassifierfrom sklearn.datasets import make_classification#1.导入数据#data = pd.read_csv(’’)#2.数据预处理#略,最终生成x_train,y_train,x_test#导入sklearn的数据集x_t...
2019-09-12 10:13:18 394
原创 逻辑回归
##逻辑回归import numpy as npimport pandas as pdfrom sklearn.datasets import load_irisfrom sklearn.linear_model import LogisticRegression#1.导入数据#data = pd.read_csv(’’)#2.数据预处理#略,最终生成x_train,y_train...
2019-09-12 10:11:18 778
原创 matplotlib笔记1
##matplotlib笔记1import numpy as npfrom matplotlib import pyplot as plt#numpy绘图pyplot()#绘制 2D 数据#绘制方程y = 2x + 5x = np.arange(1,11)y = 2 * x + 5plt.title(“Matplotlib demo”)plt.xlabel(“x axis...
2019-09-12 10:09:37 136
原创 Pandas笔记3
##pandas笔记3#合并/连接pd.merge(left, right, how=‘inner’, on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=True)#left - 一个DataFrame对象。#right - 另一个DataFrame对象。#on - 列(名称)连...
2019-09-11 16:14:16 82
原创 Pandas笔记2
##pandas笔记2#聚合#在DataFrame的多列上应用多个函数r = df.rolling(window=3,min_periods=1)r[[‘A’,‘B’]].aggregate([np.sum,np.mean])#将不同的函数应用于DataFrame的不同列r = df.rolling(window=3,min_periods=1)r.aggregate({‘A’ : ...
2019-09-11 16:13:04 127
原创 Pandas笔记1
##pandas笔记1#系列(Series)#一维#均匀数据,尺寸大小不变,数据的值可变#数据帧(DataFrame)#二维#异构数据,大小可变,数据可变#面板(Panel)#三维#异构数据,大小可变,数据可变#这些数据结构构建在Numpy数组之上import pandas as pdimport numpy as np#创建一个默认的整数索引s = pd.Series...
2019-09-11 16:12:23 113
原创 Numpy笔记5
##numpy笔记5#排序numpy.sort()numpy.sort(a, axis, kind, order)#a 要排序的数组#axis 沿着它排序数组的轴,如果没有数组会被展开,沿着最后的轴排序#kind 默认为’quicksort’(快速排序)#order 如果数组包含字段,则是要排序的字段a = np.array([[3,7],[9,1]])print(‘我们的数组是...
2019-09-11 16:09:38 114
原创 Numpy笔记4
#numpy笔记4#算术运算import numpy as npa = np.arange(9, dtype = np.float_).reshape(3,3)print(‘第一个数组:’)print(a)print(‘第二个数组:’)b = np.array([10,10,10])print(b)print(‘两个数组相加:’)print np.add(a,b)print(...
2019-09-11 16:08:37 187
原创 Numpy笔记3
##numpy笔记3#广播#广播是指 NumPy 在算术运算期间处理不同形状的数组的能力。 对数组的算术运算通常在相应的元素上进行。#如果两个阵列具有完全相同的形状,则这些操作被无缝执行。import numpy as npa = np.array([1,2,3,4])b = np.array([10,20,30,40])c = a * bprint©#输出#[10 40 ...
2019-09-11 16:04:35 146
原创 Numpy笔记2
##numpy笔记2#切片和索引#基本切片是 Python 中基本切片概念到 n 维的扩展。#通过将start,stop和step参数提供给内置的slice函数来构造一个 Python slice对象。#此slice对象被传递给数组来提取数组的一部分。import numpy as npa = np.arange(10)s = slice(2,7,2)print(a[s])#输出...
2019-09-11 16:03:40 141
原创 Numpy笔记1
##numpy笔记1import numpy as npa = np.array([[1, 2], [3, 4]])print(a)#输出#[[1, 2]#[3, 4]]dt = np.dtype([(‘age’,np.int8)])a = np.array([(10,),(20,),(30,)], dtype = dt)print(a[‘age’])#输出#[10 2...
2019-09-11 16:02:23 107
原创 Hive笔记
1、创建库create database [if not exists] 库名[comment ‘注释’][location “存储路径”](不推荐使用)[with dbproperties (‘a’=‘aaa’,‘b’=‘bbb’)];2、查看库查询库列表:show databases;查询库详细信息:desc database [extended] 库名;查询建库的详细信息:s...
2019-09-11 15:59:43 179
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人