kNN算法又称为k最近邻算法,是各种分类算法中较简单的一种(有可能是最简单的)。他的思路很好理解,即将待分类向量和所有已知向量求距离,再统计k个最小距离向量所属的类型,最多的类型即为待分类向量的类型。虽然简单,但它的效果却不差,kNN具有较高的准确度,对outliers不敏感,同时对所用的数据类型没有任何要求,使用非常简单。目前kNN常用在文本分类等任务中。
在kNN算法中,最重要的也许就是距离函数了,一般常用欧氏距离作为两个向量的度量:
但这不是一定的,可以用来度量距离的函数有很多,比如在文本分类的应用中,常用的就是余弦距离:
在实际使用kNN的过程中,归一化是必须注意的。由于kNN对数据没有要求,因此不同向量元素间的取值差异可能很大,取值大的元素权重就大,削弱了其他元素的作用,导致分类效果劣化。如下,第一项和第三项的值几乎可以忽略了:
归一化方法也很多,不过最简单也最常用的就是下式所定义的计算方法:
其中min和max分别是所有向