学习Machine Leaning In Action(二):kNN

本文介绍了k最近邻(kNN)算法的基本原理和在文本分类中的应用,强调了距离函数的选择(如欧氏距离和余弦距离)以及归一化的必要性。在C#实现中,通过泛型类设计了一个通用的kNN算法,允许用户自定义数据类型和距离计算。kNN算法的优点包括高准确率、实现简单、对异常值不敏感,但也存在存储需求大、计算复杂度高和k值选择的问题。
摘要由CSDN通过智能技术生成

kNN算法又称为k最近邻算法,是各种分类算法中较简单的一种(有可能是最简单的)。他的思路很好理解,即将待分类向量和所有已知向量求距离,再统计k个最小距离向量所属的类型,最多的类型即为待分类向量的类型。虽然简单,但它的效果却不差,kNN具有较高的准确度,对outliers不敏感,同时对所用的数据类型没有任何要求,使用非常简单。目前kNN常用在文本分类等任务中。

在kNN算法中,最重要的也许就是距离函数了,一般常用欧氏距离作为两个向量的度量:


但这不是一定的,可以用来度量距离的函数有很多,比如在文本分类的应用中,常用的就是余弦距离:



在实际使用kNN的过程中,归一化是必须注意的。由于kNN对数据没有要求,因此不同向量元素间的取值差异可能很大,取值大的元素权重就大,削弱了其他元素的作用,导致分类效果劣化。如下,第一项和第三项的值几乎可以忽略了:


归一化方法也很多,不过最简单也最常用的就是下式所定义的计算方法:


其中min和max分别是所有向

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值