【线段树】基础原理图解,建树,应用

线段树

建树方式

image-20220314225806787

将一个区间每次分半,作为节点,连接成树。

注意将 l + r > > 1 l + r >> 1 l+r>>1节点划分到左子节点,也就是奇数长度区间的中点划分到左子节点。

这个除了最后一层是满二叉树,故用类似堆的形式存储,也就是关于堆详细请看手写堆/交换堆

注意 2 x = x < < 1 , 2 x + 1 = x < < 1 ∣ 1 2x = x << 1,2x + 1 = x << 1 | 1 2x=x<<1,2x+1=x<<11

由于是存在数组里,在空间上,最坏情况下线段树的倒数第二层最右节点有右子结点,则第一层到倒数第二层的节点占位 2 n − 1 2n - 1 2n1(满二叉树性质),子结点占了 2 ( 2 n − 1 ) + 1 = 4 n − 1 2(2n - 1) + 1 = 4n - 1 2(2n1)+1=4n1处的位置,故空间一般开到 4 N 4N 4N

基础操作

这里以维护区间最大值为例。

存储

struct Node{
    int l, r; // 当前节点的左右边界
    int v; // 区间[l, r]中的最大值
    T c; // 额外维护的信息,需要就开
}tr[4 * N];

pushup

子结点更新父节点的值,这个操作在子节点修改后更新父节点。

void pushup(int u){ // 由子节点的信息,来计算父节点的信息
    tr[u].v = max(tr[u << 1].v, tr[u << 1 | 1].v);
}

build

建树,左右分治。

void build(int u,int l,int r){
    tr[u] = {l, r};
    if(l == r) return;
    int mid = l + r >> 1;
    build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r);
}

query

查询区间最大值,如图:

image-20220314231213659

若要查询从 5 − 9 5-9 59的最大值,则需根节点开始向下递归。取节点区间的中点 m i d mid mid(不是查询区间!),如果 m i d mid mid l l l的右侧则需要查看该点的左区间,如果 m i d mid mid r r r左侧则需要查看该点的右区间,查看的区间用黄色圈标出。

上一句话不是很好理解,画个图展现。蓝色区间是线段树的一段所有情况的罗列,查询的是 l l l r r r。红色箭头指向的半边表示需要看。可以观察出当 m i d > = l mid>=l mid>=l需要查左半边( < = <= <=是因为区间中点包括在左半区间), m i d < r mid<r mid<r需要查右半边。

image-20220314232252418

int query(int u,int l,int r){ // 
    if(tr[u].l >= l && tr[u].r <= r) return tr[u].v; // 树中节点被包含在[l,r]中

    int mid = tr[u].l + tr[u].r >> 1;
    int v = 0;
    if(mid >= l) v = query(u << 1, l, r); // l 右侧,看左半区间
    if(mid < r) v = max(v, query(u << 1 | 1, l, r)); // 左半边最大值和右半边最大值取max

    return v;
}

modify

单点修改只需要找到对应点改值,然后pushup更新父节点即可。

void modify(int u,int x,int v){ // x位置修改
    if(tr[u].l == x && tr[u].r == x)tr[u].v = v; 
    else{
        int mid = tr[u].l + tr[u].r >> 1;
        // 单点值要么在左边要么在右边
        if(x <= mid) modify(u << 1, x, v); 
        else modify(u << 1 | 1, x, v);
        pushup(u);
    }
}

例题

JSOI2008]最大数

最大数 - AcWing题库

image-20220314232955156

线段树先建出来长度为 m m m的树,每次加数的的时候 m o d i f y modify modify即可,注意使用 l o n g l o n g longlong longlong

/*
 * @Author: 爱学习的图灵机
 * @Date: 2022-03-14 17:57:09
 * @LastEditTime: 2022-03-14 22:16:59
 * Bilibili:https://space.bilibili.com/7469540
 * 题目地址:https://www.acwing.com/activity/content/problem/content/1607/
 * @keywords: 线段树
 */

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

typedef long long LL;
const int N = 200010;

int m, p;

struct Node{
    int l, r;
    int v; // 区间[l, r]中的最大值
}tr[4 * N];

void pushup(int u){ // 由子节点的信息,来计算父节点的信息
    tr[u].v = max(tr[u << 1].v, tr[u << 1 | 1].v);
}
void build(int u,int l,int r){
    tr[u] = {l, r};
    if(l == r) return;
    int mid = l + r >> 1;
    build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r);
}
int query(int u,int l,int r){ // 
    if(tr[u].l >= l && tr[u].r <= r) return tr[u].v; // 树中节点被包含在[l,r]中

    int mid = tr[u].l + tr[u].r >> 1;
    int v = 0;
    if(mid >= l) v = query(u << 1, l, r);
    if(mid < r) v = max(v, query(u << 1 | 1, l, r)); // 左半边最大值和右半边最大值取max

    return v;
}

void modify(int u,int x,int v){ // x位置修改
    if(tr[u].l == x && tr[u].r == x)tr[u].v = v; 
    else{
        int mid = tr[u].l + tr[u].r >> 1;
        // 单点值要么在左边要么在右边
        if(x <= mid) modify(u << 1, x, v); 
        else modify(u << 1 | 1, x, v);
        pushup(u);
    }
}


int main(){
    int n = 0, last = 0;
    scanf("%d%d", &m, &p);
    build(1, 1, m);
    
    int x;
    char op[2];
    while(m -- ){
        scanf("%s%d",op, &x);
        if(*op == 'Q'){
            last = query(1, n - x + 1, n);
            printf("%d\n", last);
        }else{
            modify(1, ++ n, ((LL) last + x) % p);
        }
    }
    
    return 0;
    
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值