线段树
建树方式
将一个区间每次分半,作为节点,连接成树。
注意将 l + r > > 1 l + r >> 1 l+r>>1节点划分到左子节点,也就是奇数长度区间的中点划分到左子节点。
这个除了最后一层是满二叉树,故用类似堆的形式存储,也就是关于堆详细请看手写堆/交换堆。
注意 2 x = x < < 1 , 2 x + 1 = x < < 1 ∣ 1 2x = x << 1,2x + 1 = x << 1 | 1 2x=x<<1,2x+1=x<<1∣1
由于是存在数组里,在空间上,最坏情况下线段树的倒数第二层最右节点有右子结点,则第一层到倒数第二层的节点占位 2 n − 1 2n - 1 2n−1(满二叉树性质),子结点占了 2 ( 2 n − 1 ) + 1 = 4 n − 1 2(2n - 1) + 1 = 4n - 1 2(2n−1)+1=4n−1处的位置,故空间一般开到 4 N 4N 4N。
基础操作
这里以维护区间最大值为例。
存储
struct Node{
int l, r; // 当前节点的左右边界
int v; // 区间[l, r]中的最大值
T c; // 额外维护的信息,需要就开
}tr[4 * N];
pushup
子结点更新父节点的值,这个操作在子节点修改后更新父节点。
void pushup(int u){ // 由子节点的信息,来计算父节点的信息
tr[u].v = max(tr[u << 1].v, tr[u << 1 | 1].v);
}
build
建树,左右分治。
void build(int u,int l,int r){
tr[u] = {l, r};
if(l == r) return;
int mid = l + r >> 1;
build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r);
}
query
查询区间最大值,如图:
若要查询从 5 − 9 5-9 5−9的最大值,则需根节点开始向下递归。取节点区间的中点 m i d mid mid(不是查询区间!),如果 m i d mid mid在 l l l的右侧则需要查看该点的左区间,如果 m i d mid mid在 r r r左侧则需要查看该点的右区间,查看的区间用黄色圈标出。
上一句话不是很好理解,画个图展现。蓝色区间是线段树的一段所有情况的罗列,查询的是 l l l到 r r r。红色箭头指向的半边表示需要看。可以观察出当 m i d > = l mid>=l mid>=l需要查左半边( < = <= <=是因为区间中点包括在左半区间), m i d < r mid<r mid<r需要查右半边。
int query(int u,int l,int r){ //
if(tr[u].l >= l && tr[u].r <= r) return tr[u].v; // 树中节点被包含在[l,r]中
int mid = tr[u].l + tr[u].r >> 1;
int v = 0;
if(mid >= l) v = query(u << 1, l, r); // l 右侧,看左半区间
if(mid < r) v = max(v, query(u << 1 | 1, l, r)); // 左半边最大值和右半边最大值取max
return v;
}
modify
单点修改只需要找到对应点改值,然后pushup更新父节点即可。
void modify(int u,int x,int v){ // x位置修改
if(tr[u].l == x && tr[u].r == x)tr[u].v = v;
else{
int mid = tr[u].l + tr[u].r >> 1;
// 单点值要么在左边要么在右边
if(x <= mid) modify(u << 1, x, v);
else modify(u << 1 | 1, x, v);
pushup(u);
}
}
例题
线段树先建出来长度为 m m m的树,每次加数的的时候 m o d i f y modify modify即可,注意使用 l o n g l o n g longlong longlong。
/*
* @Author: 爱学习的图灵机
* @Date: 2022-03-14 17:57:09
* @LastEditTime: 2022-03-14 22:16:59
* Bilibili:https://space.bilibili.com/7469540
* 题目地址:https://www.acwing.com/activity/content/problem/content/1607/
* @keywords: 线段树
*/
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N = 200010;
int m, p;
struct Node{
int l, r;
int v; // 区间[l, r]中的最大值
}tr[4 * N];
void pushup(int u){ // 由子节点的信息,来计算父节点的信息
tr[u].v = max(tr[u << 1].v, tr[u << 1 | 1].v);
}
void build(int u,int l,int r){
tr[u] = {l, r};
if(l == r) return;
int mid = l + r >> 1;
build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r);
}
int query(int u,int l,int r){ //
if(tr[u].l >= l && tr[u].r <= r) return tr[u].v; // 树中节点被包含在[l,r]中
int mid = tr[u].l + tr[u].r >> 1;
int v = 0;
if(mid >= l) v = query(u << 1, l, r);
if(mid < r) v = max(v, query(u << 1 | 1, l, r)); // 左半边最大值和右半边最大值取max
return v;
}
void modify(int u,int x,int v){ // x位置修改
if(tr[u].l == x && tr[u].r == x)tr[u].v = v;
else{
int mid = tr[u].l + tr[u].r >> 1;
// 单点值要么在左边要么在右边
if(x <= mid) modify(u << 1, x, v);
else modify(u << 1 | 1, x, v);
pushup(u);
}
}
int main(){
int n = 0, last = 0;
scanf("%d%d", &m, &p);
build(1, 1, m);
int x;
char op[2];
while(m -- ){
scanf("%s%d",op, &x);
if(*op == 'Q'){
last = query(1, n - x + 1, n);
printf("%d\n", last);
}else{
modify(1, ++ n, ((LL) last + x) % p);
}
}
return 0;
}