题目描述:
给你一个长度为 n
的字符串 word
和一个整数 k
,其中 k
是 n
的因数。
在一次操作中,你可以选择任意两个下标 i
和 j
,其中 0 <= i, j < n
,且这两个下标都可以被 k
整除,然后用从 j
开始的长度为 k
的子串替换从 i
开始的长度为 k
的子串。也就是说,将子串 word[i..i + k - 1]
替换为子串 word[j..j + k - 1]
。
返回使 word
成为 K 周期字符串 所需的 最少 操作次数。
如果存在某个长度为 k
的字符串 s
,使得 word
可以表示为任意次数连接 s
,则称字符串 word
是 K 周期字符串 。例如,如果 word == "ababab"
,那么 word
就是 s = "ab"
时的 2 周期字符串。
输入输出实例:
思路:让我们找到最小操作数,对于这道题我们可以这样理解:每k个字符作为一个字串整体,我们可以把word分成n//k(n是word长度)个子串整体,比如'word = "leetcoleet", k = 2 ',我们就可以分成5个字串整体“ 'le''et''co''le''et' ”,最后就是要把这五个子串变成一样的子串。既然是最少操作数,我们就把所有的子串变成原来word中最多数量的那一个子串整体,所以我们需要找到word中出现做多的子串整体数量,这个可以用字典实现,key为子串,value为子串出现数量。最后返回的最小操作数为n//k-max(字典.values()),比如 "leetcoleet",{‘le’:2,'et':2,'co':1}。我们只需要变动5-2=3个子串即可(无论最后都是''le''或者''et'',操作数都是3)。根据上述思路。有以下代码:
class Solution:
def minimumOperationsToMakeKPeriodic(self, word: str, k: int) -> int:
n = len(word)
ans = {}
#每k个字符构成一个子串,标记每个字串个数
for i in range(0,n,k):
if word[i:i+k] not in ans.keys():
ans[word[i:i+k]] = 1
else:
ans[word[i:i+k]] += 1
#我们需要返回最少次数,也就是将分成的n//k个子串全部变成出现最多次数的字串,所以n//k - max(ans.values())
return n//k - max(ans.values())