Baby-step giant-step  解高次同余方程a^x=b(mod n) 模版

思路
说一下a^x=b(mod n)的Baby Step Giant Step算法(一点分块的思想)

m取sqrt(p);
求y^x=z(mod p)设x=km+i
y^km∗y^i≡z
yi≡z∗ine(y^km)(逆元)
用费马小定理

y^(p-1)mod p=1;
y^m * y^(p-m-1) mod p =1;
y^m的逆元为y^(p-m-1)

ine(y^m)≡y^(p−1−m)
设其为T
ine(y^km)≡ine(y^(k−1)m)∗T
把y^i(0<=i<=m)放入map;
然后枚举k,查询
z∗ine(y^km)

描述:Theory

The algorithm is based on a space-time tradeoff. It is a fairly simple modification of trial multiplication, the naive method of finding discrete logarithms.

Given a cyclic group G of order n, a generator \alpha of the group and a group element \beta, the problem is to find an integer x such that

\alpha^x = \beta\,.

The baby-step giant-step algorithm is based on rewriting x as x = im + j, with m = \left\lceil \sqrt{n} \right\rceil and 0 \leq i < m and 0 \leq j < m. Therefore, we have:

\beta(\alpha^{-m})^i=\alpha^j\,.

The algorithm precomputes \alpha^j for several values of j. Then it fixes an m and tries values of i in the left-hand side of the congruence above, in the manner of trial multiplication. It tests to see if the congruence is satisfied for any value of j, using the precomputed values of \alpha^j.
The algorithm

Input: A cyclic group G of order n, having a generator α and an element β.

Output: A value x satisfying \alpha^{x}=\beta.

m ← Ceiling(√n)
For all j where 0 ≤ j < m:
    Compute αj and store the pair (j, αj) in a table. (See section "In practice")
Compute α−m.
γ ← β. (set γ = β)
For i = 0 to (m − 1):
    Check to see if γ is the second component (αj) of any pair in the table.
    If so, return im + j.
    If not, γ ← γ • α−m.

代码

long long cheng(long long a,long long b,long long p)
{
    long long ans=1;
    while(b>0)
    {
        if(b&1) ans=ans*a%p;
        a=a*a%p;
        b>>=1;
    }
    return ans;
}
void solve3()
{
    while(T--)
    {
        flag=0;
        long long x,y;
        long long d;
        scanf("%lld%lld%lld",&aa,&bb,&p);

        aa%=p;
        if(!aa&&!bb)    
        {
            printf("1\n");
            continue;
        }
        if(!aa)
        {
            printf("Orz, I cannot find x!\n");
            continue;
        }
        mp.clear();
        long long m=ceil(sqrt(p)),t=1;
        mp[1]=m+1;
        for(long long i=1;i<m;i++) 
        {
            t=t*aa%p;
            if(!mp[t]) mp[t]=i;
        }
        long long tmp=cheng(aa,p-m-1,p),ine=1;
        for(long long k=0;k<m;k++)
        {
            int i=mp[bb*ine%p];
            if(i)
            {   
                flag=1;     
                if(i==m+1) i=0;
                printf("%lld\n",k*m+i);
                break;
            }
            ine=ine*tmp%p;
        }
        if(!flag)
        printf("Orz, I cannot find x!\n");
    }       
}

附,一个例题:【bzoj2242】[SDOI2011]计算器
http://blog.csdn.net/ALPS233/article/details/51148958

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值