正则化(regularized)是什么?过拟合又是什么?

本文深入探讨了机器学习中过拟合的问题及其解决方案——正则化。过拟合表现为模型在训练数据上表现优异,但在未见过的数据上泛化能力差。当样本数少于特征数时,容易引发过拟合。正则化通过修改损失函数,引入惩罚项,如L1和L2正则化,来限制模型复杂度,避免过拟合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

不哔哔,机器学习里的正则化,它是为了解决过拟合提出的。

一 背景

正则化是为了解决过拟合问题而提出的。regularization,让它正常,不要那么不正常了,那么这个不正常体现在那里呢,目前[2020-5-15]来看,不就是它过拟合了,不像正常的那样了。

二 过拟合

过拟合是什么呢?
过拟合从字面意义上看,就是拟合过度了,什么才叫拟合过度呢?看下图。一个点,有好多情况,你得到的曲线,只适合某一种样本点,其他样本点适应性极差。

在这里插入图片描述

  • 从数据角度分析:首先, X X X是样本数据阵,它是一个N*P维的矩阵,N表示的样本的数量,P维表示的是每一个样本的状态数,就是N个样本,每个样本是p维的。然后,理论上应该样本数N应该远大于样本的维数P,但是,实际中可能仅有几个样本,出现N<P的情况,那么就会造成过拟合
  • 从数学角度分析:最小二乘法求得的 w = ( X T X ) − 1 X T Y w=(X^TX)^{-1}X^TY w=(XTX)1XTY中式子 X T X X^TX XTX可能是不可逆的,就会直接造成过拟合。

解决过拟合的方法:

  • 增加样本数量
  • 特征选择/特征提取,实际就是降维,降低p的维数。PCA
  • 正则化,对w约束,改变w的形式,把 ( X T X ) − 1 (X^{T}X)^{-1} (XTX)1改造成一个绝对可逆的式子。

正则化分为两种

  1. L1 -> Lasso
  2. L2 -> Ridge

三 过拟合Vs正则化

将不可逆变为可逆即为正则化

为什么需要正则化,首先正则化出现的背景是最小二乘法 w = ( X T X ) − 1 X T Y w=(X^TX)^{-1}X^TY w=(XTX)1XTY中式子 X T X X^TX XTX可能是不可逆的,从数学角度分析就是XN*p维的矩阵,N表示样本数,pXi的状态向量数,在实际应用中,可能测得的样本数很少,出现了N<P的情况,即 X T X X^TX XTX不可逆,那么w就求不来。

这样不可逆会导致什么后果呢。答,会引起过拟合。因为如果样本数过少,那么拟合的方法就会有很多。出现错误的几率就会很高。

在这里插入图片描述

怎么解决这个问题提,答,引入正则化。正则化实际上就是给最小二乘法的损失函数(Loss Function)L(w)加一个框架,得到一个新的函数J(w),其中 J ( w ) = L ( w ) + λ P ( w ) J(w)=L(w)+\lambda P(w) J(w)=L(w)+λP(w)。这样求出的w就会绝对可逆。

参考资料

[1] shuhuai008. 【机器学习】【白板推导系列】【合集 1~23】. bilibili. 2019.
https://www.bilibili.com/video/BV1aE411o7qd?p=9

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值