通俗易懂的赫夫曼树

赫夫曼树

基本介绍

1、给定n个权值作为n个叶子结点,构造一棵二叉树,若该树的带权路径长度(wpl)达到最小,称这样的二叉树为最优二叉树,也称赫夫曼树。

2、赫夫曼树是带权路径长度最短的树,权值较大的结点离根较近。

概念

1、路径:在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径。

2、路径长度:通路中分支的数目称为路径长度。若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1

3、结点的权:若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权。

4、结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积

5、树的带权路径长度:树的带权路径长度规定为所有叶子结点的带权路径长度之和,记为WPL(weighted path length) ,权值越大的结点离根结点越近的二叉树才是最优二叉树。

6、WPL最小的就是赫夫曼树**

在这里插入图片描述

过程

1、先把数组进行从小到大排序,此时数组长度为arr.length
2、然后取出前两个数字,进行结合构成一个树,并记录树的根结点的值(根结点的值为两树之和)
3、数组移除步骤2的两个数字,把根结点的值放入数组中,并重新从小到大排序,此时数组的长度arr.length-1
4、重复2-3
5、当数组的大小为1时,即结束

代码

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class HuffmanTree {

    public static void main(String[] args) {
        int arr[] = {13,7,8,3,29,6,1};
        Node node = createHuffmanTree(arr);
        preOrder(node);

    }
    public static void preOrder(Node root){
        if (root!=null){
            root.preOrder();
        } else {
            System.out.println("null");
        }
    }

    public static Node createHuffmanTree(int[] arr){
        List<Node> nodes = new ArrayList<>();
        for (int value:arr){
            nodes.add(new Node(value));
        }
		/**
		1、然后取出前两个数字,进行结合构成一个树,并记录树的根结点的值(根结点的值为两树之和)
2、数组移除步骤2的两个数字,把根结点的值放入数组中,并重新从小到大排序,此时数组的长度arr.length-1
		**/
        while (nodes.size()>1){
            Collections.sort(nodes);

            Node leftNode = nodes.get(0);
            Node rightNode = nodes.get(1);
            Node parent = new Node(leftNode.value+rightNode.value);
            parent.left = leftNode;
            parent.right = rightNode;
            nodes.remove(leftNode);
            nodes.remove(rightNode);
            nodes.add(parent);
        }
        return nodes.get(0);
    }
}

class Node implements Comparable<Node> {
    int value;
    Node left;
    Node right;

    public void preOrder(){
        System.out.println(this);
        if (this.left!=null){
            this.left.preOrder();
        }
        if (this.right!=null){
            this.right.preOrder();
        }
    }

    public Node(int value) {
        this.value = value;
    }

    @Override
    public String toString() {
        return "Node{" +
                "value=" + value +
                '}';
    }

    @Override
    public int compareTo(Node o) {
        return this.value - o.value;
    }
}

发布了52 篇原创文章 · 获赞 18 · 访问量 1290
App 阅读领勋章
微信扫码 下载APP
阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 1024 设计师: 上身试试

分享到微信朋友圈

×

扫一扫,手机浏览