人工智能学习06--pytorch07--完整的模型训练、测试套路(CIFAR10)

该代码示例展示了如何使用PyTorch构建和训练一个卷积神经网络(CNN)模型处理CIFAR10数据集。模型包括卷积层、最大池化层和全连接层,通过交叉熵损失函数进行优化,并使用SGD作为优化器。训练过程中使用TensorBoard记录训练和测试损失。每轮训练后,对测试集进行评估,计算整体正确率。
摘要由CSDN通过智能技术生成

【训练套路】:

建立模型

在这里插入图片描述
在这里插入图片描述

  1. 卷积
    Inputs → Feature maps
    在这里插入图片描述

3,32,5,1(默认),(输入3232,输入3232,经计算此处padding为2)

  1. 最大池化
    在这里插入图片描述
    nn.MaxPool2d(2)

  2. 卷积
    在这里插入图片描述

  3. 最大池化
    在这里插入图片描述

  4. 卷积
    在这里插入图片描述
    inchannel32,outchannel64,大小没有变所以padding2

  5. 最大池化
    在这里插入图片描述

  6. 展平
    在这里插入图片描述
    把64个4*4的展平

  7. 线性层
    在这里插入图片描述

  8. 线性层
    在这里插入图片描述
    完成模型初始化

import torchvision
from torch import nn
from torch.utils.data import DataLoader

# 准备训练数据集、测试数据集

train_data = torchvision.datasets.CIFAR10(root="./datasetCIFAR10",train=True,transform=torchvision.transforms.ToTensor(),
                                          download=True)
test_data = torchvision.datasets.CIFAR10(root="./datasetCIFAR10",train=False,transform=torchvision.transforms.ToTensor(),
                                         download=True)

# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))

# 利用DataLoader加载数据集
train_dataloader = DataLoader(train_data,batch_size=64)
test_dataloader = DataLoader(test_data,batch_size=64)

# 搭建神经网络
# 一共10个类别(10分类)
class cifar10Net(nn.Module):
    def __init__(self):
        super(cifar10Net,self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3,32,5,1,2), # 卷积
            nn.MaxPool2d(2), # 最大池化 kernel_size=2
            nn.Conv2d(32,32,5,1,2),
            nn.MaxPool2d(2),
            nn.Conv2d(32,64,5,1,2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4,64),
            nn.Linear(64,10),
        )
    def forward(self,x):
        x = self.model(x)
        return x

测试网络正确性

# 把上面 ↑ 搭建的网络模型创造出来
# 考察:一般是给一个输入的尺寸,看输出的尺寸是不是我们想要的
# 64 batch_size ; 3 通道 ; 32*32

if __name__ == '__main__':
    cifar10net = cifar10Net()
    input = torch.ones((64,3,32,32)) # 输入64张图片
    output = cifar10net(input)
    print(output.shape) # torch.Size([64, 10]) 返回64张图,每一行上10个数据,表示属于这十个类别的概率

在训练文件中引入网络

这两个文件要在同一个文件夹底下
但是这里报错了,上网查了一下:
https://www.cnblogs.com/xiaohuamao/p/6903030.html
但是也不行
原来文件开头不能用数字打头,重新建了一个文件就好了
在这里插入图片描述

创建网络模型、训练

# 创建网络模型
cifar10net = cifar10Net()

# 损失函数
# 因为分类问题,可以用到“损失函数”课中讲的交叉熵
loss_fn = nn.CrossEntropyLoss()

# 优化器
# learning_rate = 0.01
learning_rate = 1e-2 # 1e-2 = 1x(10)^(-2) = 1/100 = 0.01
# parameters填建立的网络模型
optimizer = torch.optim.SGD(cifar10net.parameters(),lr=learning_rate)

# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 10
# 把for循环里的东西循环了10次
for i in range(epoch):
    print("--------第{}轮训练开始--------".format(i+1))
    # --------------训练步骤开始(优化器调优)--------------- 梯度清零、反向传播、参数优化、变量加一
    # 从训练的 dataloader 中取数据
    for data in train_dataloader:
        imgs,targets = data
        outputs = cifar10net(imgs) # 把训练数据送到网络中,获得相应输出
    # 获得输出后与真实的target进行对比,得到误差
        loss = loss_fn(outputs,targets)
    # 进行优化 【先把梯度清零】
        optimizer.zero_grad()
    # 反向传播,得到每个参数的梯度
        loss.backward()
    # 对参数优化
        optimizer.step()
    # --------------完成了一次优化---------------
        total_train_step = total_train_step + 1
        print("训练次数:{},loss:{}".format(total_train_step,loss)) # 或者loss.item()   .item():把tensor数据类型转化为真实数字

在这里插入图片描述
如何知道这个模型是否训练好、是否达到需求
可以在每一轮训练后进行测试,在测试集上跑一边,利用在测试集输出的正确率来衡量。

这里就不调优了,就利用现有的模型来

import torchvision
from torch import nn
from torch.utils.data import DataLoader
from cifar10NetModel import *

# 准备训练数据集、测试数据集

train_data = torchvision.datasets.CIFAR10(root="./datasetCIFAR10",train=True,transform=torchvision.transforms.ToTensor(),
                                          download=True)
test_data = torchvision.datasets.CIFAR10(root="./datasetCIFAR10",train=False,transform=torchvision.transforms.ToTensor(),
                                         download=True)

# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))

# 利用DataLoader加载数据集
train_dataloader = DataLoader(train_data,batch_size=64)
test_dataloader = DataLoader(test_data,batch_size=64)

# 创建网络模型
cifar10net = cifar10Net()

# 损失函数
# 因为分类问题,可以用到“损失函数”课中讲的交叉熵
loss_fn = nn.CrossEntropyLoss()

# 优化器
# learning_rate = 0.01
learning_rate = 1e-2 # 1e-2 = 1x(10)^(-2) = 1/100 = 0.01
# parameters填建立的网络模型
optimizer = torch.optim.SGD(cifar10net.parameters(),lr=learning_rate)

# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 10
# 把for循环里的东西循环了10次
for i in range(epoch):
    print("--------第{}轮训练开始--------".format(i+1))
    # --------------训练步骤开始(优化器调优)--------------- 梯度清零、反向传播、参数优化、变量加一
    # 从训练的 dataloader 中取数据
    for data in train_dataloader:
        imgs,targets = data
        outputs = cifar10net(imgs) # 把训练数据送到网络中,获得相应输出
    # 获得输出后与真实的target进行对比,得到误差
        loss = loss_fn(outputs,targets)
    # 进行优化 【先把梯度清零】
        optimizer.zero_grad()
    # 反向传播,得到每个参数的梯度
        loss.backward()
    # 对参数优化
        optimizer.step()
    # --------------完成了一次优化---------------
        total_train_step = total_train_step + 1
        # if total_train_step % 100 == 0:
        print("训练次数:{},loss:{}".format(total_train_step,loss)) # 或者loss.item()   .item():把tensor数据类型转化为真实数字

# 如何知道这个模型是否训练好、是否达到需求
# 可以在每一轮训练后进行测试,在测试集上跑一边,利用在测试集输出的正确率来衡量。
    # --------------测试步骤开始---------------
# 这里就不调优了,就利用现有的模型来 (with torch.no_grad())
    total_test_loss = 0
    with torch.no_grad():
        for data in test_dataloader:
            imgs,targets = data
            outputs = cifar10net(imgs)
            loss = loss_fn(outputs,targets) # 一部分数据(data),not测试集整体数据的损失
# 把每次求出的loss加上去,最后得到整体loss
            total_test_loss = total_test_loss + loss.item()
    print("整体测试集上的loss:{}".format(total_test_loss))

在这里插入图片描述

添加tensorboard

import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

from cifar10NetModel import *

# 准备训练数据集、测试数据集

train_data = torchvision.datasets.CIFAR10(root="./datasetCIFAR10",train=True,transform=torchvision.transforms.ToTensor(),
                                          download=True)
test_data = torchvision.datasets.CIFAR10(root="./datasetCIFAR10",train=False,transform=torchvision.transforms.ToTensor(),
                                         download=True)

# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))

# 利用DataLoader加载数据集
train_dataloader = DataLoader(train_data,batch_size=64)
test_dataloader = DataLoader(test_data,batch_size=64)

# 创建网络模型
cifar10net = cifar10Net()

# 损失函数
# 因为分类问题,可以用到“损失函数”课中讲的交叉熵
loss_fn = nn.CrossEntropyLoss()

# 优化器
# learning_rate = 0.01
learning_rate = 1e-2 # 1e-2 = 1x(10)^(-2) = 1/100 = 0.01
# parameters填建立的网络模型
optimizer = torch.optim.SGD(cifar10net.parameters(),lr=learning_rate)

# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 5

# 添加tensorboard
writer = SummaryWriter("logs_train_cifar10")

# 把for循环里的东西循环了5次
for i in range(epoch):
    print("--------第{}轮训练开始--------".format(i+1))
    # --------------训练步骤开始(优化器调优)--------------- 梯度清零、反向传播、参数优化、变量加一
    # 从训练的 dataloader 中取数据
    for data in train_dataloader:
        imgs,targets = data
        outputs = cifar10net(imgs) # 把训练数据送到网络中,获得相应输出
    # 获得输出后与真实的target进行对比,得到误差
        loss = loss_fn(outputs,targets)
    # 进行优化 【先把梯度清零】
        optimizer.zero_grad()
    # 反向传播,得到每个参数的梯度
        loss.backward()
    # 对参数优化
        optimizer.step()
    # --------------完成了一次优化---------------
        total_train_step = total_train_step + 1
        if total_train_step % 100 == 0:
            print("训练次数:{},loss:{}".format(total_train_step,loss.item())) # 或者loss.item()   .item():把tensor数据类型转化为真实数字
            # 逢百记录
            writer.add_scalar("train_loss",loss.item(),total_train_step)

# 如何知道这个模型是否训练好、是否达到需求
# 可以在每一轮训练后进行测试,在测试集上跑一边,利用在测试集输出的正确率来衡量。
    # --------------测试步骤开始---------------
# 这里就不调优了,就利用现有的模型来 (with torch.no_grad())
    total_test_loss = 0
    with torch.no_grad():
        for data in test_dataloader:
            imgs,targets = data
            outputs = cifar10net(imgs)
            loss = loss_fn(outputs,targets) # 一部分数据(data),not测试集整体数据的损失
# 把每次求出的loss加上去,最后得到整体loss
            total_test_loss = total_test_loss + loss.item()
    print("整体测试集上的loss:{}".format(total_test_loss))
    writer.add_scalar("test_loss",total_test_loss,total_test_step)
    total_test_step = total_test_step + 1

writer.close()
#  tensorboard --logdir=logs_train_cifar10 --port=6007

可看到test_loss、train_loss不断下降
在这里插入图片描述

保存每一次训练后的模型

在这里插入图片描述

计算整体正确率

在这里插入图片描述
1,横着看
在这里插入图片描述
0,竖着看
在这里插入图片描述
在这里插入图片描述

import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

from cifar10NetModel import *

# 准备训练数据集、测试数据集

train_data = torchvision.datasets.CIFAR10(root="./datasetCIFAR10",train=True,transform=torchvision.transforms.ToTensor(),
                                          download=True)
test_data = torchvision.datasets.CIFAR10(root="./datasetCIFAR10",train=False,transform=torchvision.transforms.ToTensor(),
                                         download=True)

# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))

# 利用DataLoader加载数据集
train_dataloader = DataLoader(train_data,batch_size=64)
test_dataloader = DataLoader(test_data,batch_size=64)

# 创建网络模型
cifar10net = cifar10Net()

# 损失函数
# 因为分类问题,可以用到“损失函数”课中讲的交叉熵
loss_fn = nn.CrossEntropyLoss()

# 优化器
# learning_rate = 0.01
learning_rate = 1e-2 # 1e-2 = 1x(10)^(-2) = 1/100 = 0.01
# parameters填建立的网络模型
optimizer = torch.optim.SGD(cifar10net.parameters(),lr=learning_rate)

# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 5

# 添加tensorboard
writer = SummaryWriter("logs_train_cifar10")

# 把for循环里的东西循环了5次
for i in range(epoch):
    print("--------第{}轮训练开始--------".format(i+1))
    # --------------训练步骤开始(优化器调优)--------------- 梯度清零、反向传播、参数优化、变量加一
    # 从训练的 dataloader 中取数据
    for data in train_dataloader:
        imgs,targets = data
        outputs = cifar10net(imgs) # 把训练数据送到网络中,获得相应输出
    # 获得输出后与真实的target进行对比,得到误差
        loss = loss_fn(outputs,targets)
    # 进行优化 【先把梯度清零】
        optimizer.zero_grad()
    # 反向传播,得到每个参数的梯度
        loss.backward()
    # 对参数优化
        optimizer.step()
    # --------------完成了一次优化---------------
        total_train_step = total_train_step + 1
        if total_train_step % 100 == 0:
            print("训练次数:{},loss:{}".format(total_train_step,loss.item())) # 或者loss.item()   .item():把tensor数据类型转化为真实数字
            # 逢百记录
            writer.add_scalar("train_loss",loss.item(),total_train_step)

# 如何知道这个模型是否训练好、是否达到需求
# 可以在每一轮训练后进行测试,在测试集上跑一边,利用在测试集输出的正确率来衡量。
    # --------------测试步骤开始---------------
# 这里就不调优了,就利用现有的模型来 (with torch.no_grad())
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():
        for data in test_dataloader:
            imgs,targets = data
            outputs = cifar10net(imgs)
            loss = loss_fn(outputs,targets) # 一部分数据(data),not测试集整体数据的损失
# 把每次求出的loss加上去,最后得到整体loss
            total_test_loss = total_test_loss + loss.item()
            accuracy = (outputs.argmax(1) == targets).sum() # 添加每次这一小部分的正确率
            total_accuracy = total_accuracy + accuracy

    print("整体测试集上的loss:{}".format(total_test_loss))
    print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))

    writer.add_scalar("test_loss",total_test_loss,total_test_step)
    writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)

    total_test_step = total_test_step + 1
    # 保存每一轮训练后的结果
    # torch.save(cifar10net,"cifar10net_{}.pth".format(i))
    # print("模型已保存")

writer.close()
#  tensorboard --logdir=logs_train_cifar10 --port=6007

在这里插入图片描述

模型.train() 模型.eval()

分别是把模型设置成训练模式、测试模式
在这里插入图片描述
但是前面写的代码都没用这种模式,依旧可以训练、测试
在这里插入图片描述
在这里插入图片描述
前面写过的代码里并没有这两个层
现在加上,更完整
在这里插入图片描述

没改什么,但是加了一些注释

import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

from cifar10NetModel import *

# 【1】准备训练数据集、测试数据集

train_data = torchvision.datasets.CIFAR10(root="./datasetCIFAR10",train=True,transform=torchvision.transforms.ToTensor(),
                                          download=True)
test_data = torchvision.datasets.CIFAR10(root="./datasetCIFAR10",train=False,transform=torchvision.transforms.ToTensor(),
                                         download=True)

# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))

# 【2】利用DataLoader加载数据集
train_dataloader = DataLoader(train_data,batch_size=64)
test_dataloader = DataLoader(test_data,batch_size=64)

# 【3】创建网络模型
cifar10net = cifar10Net()

# 【4】损失函数
# 因为分类问题,可以用到“损失函数”课中讲的交叉熵
loss_fn = nn.CrossEntropyLoss()

# 【5】优化器
# learning_rate = 0.01
learning_rate = 1e-2 # 1e-2 = 1x(10)^(-2) = 1/100 = 0.01
# parameters填建立的网络模型
optimizer = torch.optim.SGD(cifar10net.parameters(),lr=learning_rate)

# 【6】设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数,使之能够多次训练
epoch = 5

# 添加tensorboard
writer = SummaryWriter("logs_train_cifar10")

# 把for循环里的东西循环了5次
for i in range(epoch):
    print("--------第{}轮训练开始--------".format(i+1))
    # --------------训练步骤开始(优化器调优)--------------- 梯度清零、反向传播、参数优化、变量加一
    # 【7】网络进入训练状态
    cifar10net.train()
    # 从训练的 dataloader 中【取数据】
    for data in train_dataloader:
        imgs,targets = data
        outputs = cifar10net(imgs) # 把训练数据送到网络中,获得相应输出
    # 获得输出后与真实的target进行对比,得到【误差】
        loss = loss_fn(outputs,targets)
    # 进行优化 【先把梯度清零】
        optimizer.zero_grad()
    # 反向传播,得到每个参数的梯度
        loss.backward()
    # 对参数【优化】
        optimizer.step()
    # --------------完成了一次优化---------------
    # 【感知输出】
        total_train_step = total_train_step + 1
        if total_train_step % 100 == 0:
            print("训练次数:{},loss:{}".format(total_train_step,loss.item())) # 或者loss.item()   .item():把tensor数据类型转化为真实数字
            # 逢百记录
            writer.add_scalar("train_loss",loss.item(),total_train_step)

# 如何知道这个模型是否训练好、是否达到需求
# 可以在每一轮训练后进行测试,在测试集上跑一边,利用在测试集输出的正确率来衡量。
    # --------------测试步骤开始---------------
    # 【8】测试
    cifar10net.eval()
    # 这里就不调优了,就利用现有的模型来 (with torch.no_grad())
    total_test_loss = 0
    total_accuracy = 0
    # 【with torch.no_grad()】此时只需要测试,不需要对梯度进行调整!重要!
    with torch.no_grad():
        for data in test_dataloader: #【取数据】
            imgs,targets = data
            outputs = cifar10net(imgs)
            loss = loss_fn(outputs,targets) # 一部分数据(data),not测试集整体数据的损失 【误差】
            # 把每次求出的loss加上去,最后得到整体loss
            total_test_loss = total_test_loss + loss.item()
            # 【显示误差】
            accuracy = (outputs.argmax(1) == targets).sum() # 添加每次这一小部分的正确率
            total_accuracy = total_accuracy + accuracy

    # 展示训练的网络在测试集上的效果
    print("整体测试集上的loss:{}".format(total_test_loss))
    print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))

    writer.add_scalar("test_loss",total_test_loss,total_test_step)
    writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)

    total_test_step = total_test_step + 1
    # 【保存】每一轮训练后的结果
    # (方式一)
    # torch.save(cifar10net,"cifar10net_{}.pth".format(i))
    # (方式二)
    # torch.save(cifar10net.state_dict(),"cifar10net_{}.pth".format(i))
    # print("模型已保存")

writer.close()
#  tensorboard --logdir=logs_train_cifar10 --port=6007

用GPU训练

【测试套路】:

输入图片与尺寸

相对路径:两个点是上一目录
在这里插入图片描述
在这里插入图片描述
……
在这里插入图片描述
发现这个图片的大小是 261210,而上面模型的输入是3232
在这里插入图片描述
在这里插入图片描述

import torch
import torchvision.transforms
from PIL import Image
from torch import nn

image_path = "D:\Projects\PycharmProjects\pythonProject\images\dog.png"
image = Image.open(image_path)
print(image) # <PIL.PngImagePlugin.PngImageFile image mode=RGB size=261x210 at 0x1686FAAE310>
# 因为png是四通道,除了RGB三通道外还有一个透明通道。所以调用这段代码保留颜色通道
# 如果图片本来就是三个通道,调用此操作后不变。
# 加上这一步后可以适应png、jpg各种格式的图片
# 不同截图软件保留的通道数不一样
# image = image.convert('RGB')

transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32,32)),
                                            torchvision.transforms.ToTensor()])

image = transform(image)
print(image.shape)

# 拷贝的网络模型
# 粘贴的是参数,需要把参数放入到网络模型中去,没有模型只放参数是不可能运行的
class cifar10Net(nn.Module):
    def __init__(self):
        super(cifar10Net,self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3,32,5,1,2), # 卷积
            nn.MaxPool2d(2), # 最大池化 kernel_size=2
            nn.Conv2d(32,32,5,1,2),
            nn.MaxPool2d(2),
            nn.Conv2d(32,64,5,1,2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4,64),
            nn.Linear(64,10),
        )
    def forward(self,x):
        x = self.model(x)
        return x
# 加载模型
model = torch.load("cifar10net_9.pth")
print(model)
# 模型网络的输入要求张量的阶数为4,
# 即(batch_size, Channel,Hight,weight),一般的图片输入为3阶张量,
# 即(Channel:3, Hight:32, Weight:32)。
image = torch.reshape(image,(1,3,32,32))
model.eval()
with torch.no_grad(): # 节约内存、性能
    output = model(image)
print(output)

# 预测输出:tensor([[ 2.2722, -1.4881, -0.8504,  1.8632,  0.8308,  1.0495,  0.6538, -1.5160,
#          -0.6486, -1.6084]])
# 第0类最大 tensor([0]) 不准确,dog是类5
print(output.argmax(1))

在这里插入图片描述
预测错了,哈哈哈哈,但是总体思路就是这样。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: PyTorch的ResNet-18在CIFAR-10数据集的预训练模型是指在经过大规模的图像数据集上进行预训练后的ResNet-18模型,以便在CIFAR-10数据集上进行更好的图像分类任务。 ResNet-18是一个由18个卷积层和全连接层组成的深度神经网络。预训练模型是指在大规模数据上进行训练得到的模型参数,因此具有更好的泛化性能。CIFAR-10是一个包含10个类别的图像分类数据集,用于在小尺寸图像上进行模型训练和评估。 通过使用预训练的ResNet-18模型,在CIFAR-10数据集上进行图像分类任务时,我们可以利用预训练模型的权重参数来加快训练过程并提高准确率。预训练模型的好处是可以从大规模数据中学习到更多的特征表示,这些特征表示通常具有更高的鉴别性,因此可以更好地捕捉图像的关键特征。 对于CIFAR-10数据集,预训练模型可以有效地缩短训练时间并提高模型的收敛速度,因为在预训练模型中已经包含了对图像的一些共享特征的学习。通过在CIFAR-10数据集上进行微调,即在预训练模型的基础上进行进一步的训练,可以逐步调整模型参数以适应CIFAR-10数据集的特定要求,从而提高最终的图像分类性能。 总而言之,PyTorch的ResNet-18在CIFAR-10的预训练模型是通过在大规模数据上进行训练,在CIFAR-10数据集上进行图像分类任务时使用的预训练模型。这个预训练模型可以帮助提高训练速度和分类准确率,并且在模型训练和微调时起到了重要作用。 ### 回答2: PyTorch的ResNet-18是一种在CIFAR-10数据集上进行预训练的深度神经网络模型。CIFAR-10是一个包含10个类别的图像分类数据集,包括飞机、汽车、鸟、猫、鹿、狗、青蛙、马、船和卡车。 ResNet-18是指由18个卷积层和全连接层组成的深度残差网络。该网络的设计思想是通过残差连接(即跳过连接)来解决深度网络中的梯度消失问题,使得网络具有更好的训练效果。这意味着在每个卷积层之后,输入信号可以通过两条路径传递:一条直接连接到后续层,另一条通过卷积操作后再进行连接。这种设计可以使网络更加容易学习输入和输出之间的映射关系。 在CIFAR-10上预训练的ResNet-18模型具有多个优点。首先,这个模型具有较小的参数量和计算复杂度,适合在资源有限的环境下使用。其次,该模型经过在CIFAR-10数据集上的预训练,可以直接用于图像分类任务。通过在CIFAR-10上进行预训练模型可以学习到一般的图像特征和模式,使其能够更好地泛化到其他类似的图像分类任务中。 通过使用预训练的ResNet-18模型,我们可以利用其已经学到的特征和知识,节省训练时间,并为我们的具体图像分类任务提供一个良好的起点。此外,该模型可以通过微调(fine-tuning)进一步优化,以适应特定任务的需求。 综上所述,PyTorch的ResNet-18在CIFAR-10的预训练模型是一个有价值的工具,可以用于图像分类任务,具有较小的参数量和计算复杂度,预先学习了一般的图像特征和模式,并可以通过微调进一步适应特定任务的需求。 ### 回答3: PyTorch的预训练模型ResNet-18在CIFAR-10数据集上表现出色。首先,CIFAR-10是一个包含10个不同类别的图像数据集,每个类别有6000个图像,共计60000个图像。ResNet-18是一个基于深度残差网络的模型,它具有18个卷积层和全连接层。该模型在ImageNet数据集上进行了预训练,其中包含了1000个类别的图像。 当我们将预训练的ResNet-18模型应用于CIFAR-10数据集时,可以得到很好的结果。因为CIFAR-10数据集的图像尺寸较小(32x32),相对于ImageNet数据集中的图像(224x224),所以ResNet-18模型在CIFAR-10上的训练速度更快。此外,ResNet-18模型通过残差连接解决了深度网络中的梯度消失问题,这使得它在CIFAR-10数据集上的表现也非常稳定。 通过使用预训练模型,我们可以通过迁移学习的方式节省训练时间。我们可以先将ResNet-18加载到内存中,然后只需针对CIFAR-10数据集的最后一层或几层进行微调即可。这样可以有效地提高模型在CIFAR-10上的性能。 总之,PyTorch中的预训练模型ResNet-18在CIFAR-10数据集上表现优秀。它通过残差连接解决了深度网络中的梯度消失问题,具有较快的训练速度和较好的稳定性。使用预训练模型可以节省训练时间,并通过微调模型的方式进一步提高性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值