目录
前言
📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。
🚀对毕设有任何疑问都可以问学长哦!
大家好,这里是海浪学长计算机毕设专题,本次分享的课题是
🎯基于深度学习的蔬菜价格预测算法系统
项目背景
随着农业现代化的推进和市场经济的发展,蔬菜价格的波动对农民收入、市场供应和消费者支出具有重要影响。因此,开发一个能够准确预测蔬菜价格的系统对于帮助农民合理安排生产、促进市场稳定供应具有重要意义。基于深度学习的蔬菜价格预测算法系统,结合了最新的神经网络技术和大数据分析方法,可以实现对蔬菜价格的准确预测。此课题的研究对于促进农业信息化技术的发展,提高蔬菜价格预测的准确性和效率,具有重要意义。
设计思路
时间序列分析
检验时间序列是否平稳的方法有很多,其中时序图检验法简便、直观。如果时间序列是平稳的,那它会围绕均值在一定范围内不断波动,而如果数据点有显著的趋势或者周期性变化,那么它是非平稳的。进一步判断可以通过检验样本的自相关函数图(ACF)和偏自相关函数图(PACF),如果自相关系数减到0,表示数据是平稳性的。如果自相关系数缓慢接近0,表示数据是非平稳的。
一个时间序列如果是平稳的,需要满足以下几个前提条件:
- 均值是与时间无关的常数。即随着时间的变化,时间序列数据在某个固定的水平上下波动,但不存在某种规律。
- 方差是与时间无关的常数。方差体现了数据的波动幅度,这说明平稳序列数据围绕均值波动的范围是相同的。
- 协方差是只与时间间隔有关,与具体时间点无关的常数。也就是说,数据随着时间波动的两个波峰或者波谷之间的距离是相等的,这个距离称为时间间隔。
在构建ARIMA模型中,选择滞后阶数是重要的步骤之一。较大的滞后阶数可以更好地拟合模型,但需要注意,滞后阶数越大,待估计的参数也会相应增加,使得模型变得更复杂,容易出现过拟合现象。因此,在选择滞后阶数时,需要多角度考量。在ARIMA模型构建过程中,选择合适的滞后阶数是关键,可以借助AIC准则来判断模型的拟合效果和有效性,同时需要平衡拟合精度和参数个数,以避免过拟合问题。
LSTM深度学习
LSTM是一种常用于处理序列数据的深度学习模型,它在蔬菜价格预测中也有广泛的应用。蔬菜价格预测是一个具有挑战性的问题,因为价格受供需关系、季节性变化、天气条件等多种因素影响。LSTM模型可以通过学习历史价格数据的序列模式和趋势,来预测未来的价格走势。首先,需要准备用于训练和测试的蔬菜价格数据集。数据集应包括蔬菜的历史价格、相关的影响因素(如天气数据、供应量等)以及对应的时间戳。接下来,可以使用LSTM模型对数据进行训练和预测。LSTM模型具有记忆单元和门控机制,可以有效地处理序列数据的长期依赖关系。模型可以接收历史价格序列作为输入,经过多个LSTM层进行特征提取和序列建模,最后通过全连接层输出预测结果。
RNN深度神经网络模型与传统神经网络模型的区别在于RNN的每一层的参数是共享的,并且RNN的隐藏层节点之间是互相连接的,这使得它可以充分利用序列之间的关联性。而基础的神经网络模型只在层与层之间建立了权连接,而每一层内的节点均未连接。RNN与基础神经网络的最大不同在于层之间的神经元之间也建立了权连接。RNN中隐藏层节点的连接性决定了RNN隐藏层当前时刻的输出是由当前时刻输入层的输入和前一时刻隐藏层的输出共同决定的。这种结构特性使得RNN适用于处理序列数据,可以捕捉到序列中的时间依赖关系。RNN模型在每个时间步都接收一个输入,并将隐藏层的输出传递到下一个时间步,形成了循环的结构。这种循环结构使得RNN能够对过去的信息进行记忆,并在处理序列数据时具有记忆能力。
LSTM(长短时记忆)是一种基于RNN(循环神经网络)的模型,将时间序列的概念引入网络结构中,以挖掘长短时间跨度下变形监测数据之间的关联性。通过将传统神经网络的简单节点改进为存储单元的方式,避免了RNN中学习长时间跨度数据的关联性时出现梯度爆炸和梯度消失,提升预测精度。作为一种反馈型递归神经网络,LSTM用于学习长时间跨度数据之间的关联性,它将传统神经网络的简单节点改进为独特的记忆单元形式。
记忆单元存在于每个LSTM神经网络单元中,在t时刻的状态为c,通过激活单元函数sigmoid或tanh对输入门、遗忘门和输出门的控制,实现对LSTM模型中单元块内部的识别和改动。基于ARIMA和LSTM的混合模型在蔬菜价格预测中的应用中,LSTM模型结构的控制模式有利于对蔬菜价格时间序列上的信息进行选择性地记忆,满足时间序列中长期和短期关联性分析的需求。
数据集
由于网络上没有现有的合适的数据集,我决定自己去市场进行拍摄,收集蔬菜价格数据并制作了一个全新的数据集。这个数据集包含了各种蔬菜价格的历史数据,其中包括不同品种的蔬菜在不同时间点的价格。通过现场收集,我能够获取到真实的蔬菜价格数据和多样的市场环境,这将为我的研究提供更准确、可靠的数据。我相信这个自制的数据集将为蔬菜价格预测研究提供有力的支持,并为该领域的发展做出积极贡献。
实验环境设置
建模平台采用基于64位Anaconda(Python 3.6.2)的环境,主要调用的模块包括pandas(0.18.1)、numpy(1.13.1)、tensorflow(1.3.0)、matplotlib(2.0.2)、keras(2.1.5)以及scikit-learn(0.19.0)。实证分析的数据是广州市的蔬菜日频数据,日期跨度为2020年1月1日至2023年12月31日,数据来源于广州市农业信息网和广州市统计年鉴。
实验结果分析
利用Python绘制自相关和偏自相关函数结果图,可以使用pandas库中提供的describe命令对蔬菜价格数据进行描述性分析。这包括样本数量、均值、标准差、最值等数据中存在的缺失值。处理缺失值的方法有:在数据量很大的情况下,可以删除含有缺失值的样本;但是当数据量较小时,直接删除可能不够合适。通常处理缺失值的方法是利用可能值来补充缺失值,例如均值插补、中值插补、极大似然估计、多重估计等。
为了防止过拟合,我们对补全的数据进行了归一化处理。在模型评估中,我们选择了均方误差作为损失函数来衡量模型的性能。综上所述,通过这些步骤,我们可以更好地理解和分析蔬菜价格数据,为后续的建模和预测工作提供基础。
相关代码示例:
from statsmodels.tsa.arima.model import ARIMA
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense
# 读取蔬菜价格数据
data = pd.read_csv('vegetable_prices.csv')
# 数据预处理
data['Date'] = pd.to_datetime(data['Date'])
data.set_index('Date', inplace=True)
data = data['Price'].values.astype('float32')
# 划分训练集和测试集
train_size = int(len(data) * 0.8)
train_data, test_data = data[:train_size], data[train_size:]
# 定义ARIMA模型
model_arima = ARIMA(train_data, order=(2, 1, 0))
model_arima_fit = model_arima.fit()
# 使用ARIMA模型进行预测
predictions_arima = model_arima_fit.predict(start=train_size, end=train_size + len(test_data) - 1)
# 数据归一化
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_train_data = scaler.fit_transform(train_data.reshape(-1, 1))
scaled_test_data = scaler.transform(test_data.reshape(-1, 1))
海浪学长项目示例: