如何在不安装Anaconda的情况下给Pycharm配置Pytorch环境

前置状态:已安装python、Pycharm,需要配置一个pytorch环境,但又不想安装Anaconda。那么接下来我们就一步一步进行设置:

1、创建文件夹存放虚拟环境:

先创建一个envs文件夹,在envs文件夹内创建一个文件夹pytorch,用来存放虚拟环境的文件。(例如:D:\envs\pytorch)

2、给虚拟环境配置解释器:

打开pycharm,点击file——Settings——Project——Python Interpreter——Add Interperter。如下图:

点击Add Interpreter之后,弹出窗口(如下图),

点击Virtualenv Environment

点击New

Location处:选择第一步创建的虚拟环境文件夹(D:\envs\pytorch)

Base Interpreter处:从

### 配置 AnacondaPyCharm 使用 PyTorch #### 创建 PyTorch 虚拟环境 为了确保 Python 版本兼容并隔离依赖项,在 Anaconda创建专门用于 PyTorch 的虚拟环境是一个良好的实践。通过执行如下命令来建立名为 `pytorch` 的新环境,并指定 Python 版本为 3.6: ```bash conda create -n pytorch python=3.6 ``` 激活此新建的环境以便后续操作[^3]。 #### 安装 PyTorch 库 一旦进入目标环境中,下一步就是安装 PyTorch 及其相关组件。根据官方文档推荐的方式进行安装是最优的选择之一。对于 CUDA 支持的需求同,具体的安装指令也会有所变化;通常情况下可以直接采用 Conda 渠道完成安装工作: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch ``` 这条语句会自动处理好所有必要的依赖关系[^4]。 #### 将 PyTorch 环境集成到 PyCharm 为了让 PyCharm 认识到刚刚构建好的 PyTorch 开发环境,需按照以下方式配置 IDE 设置: - 打开 PyCharm 并启动一个新的或现有的项目; - 进入 **File | Settings...** (Windows/Linux) 或者 **PyCharm | Preferences...** (macOS),导航至 **Project: <project_name> | Python Interpreter**; - 点击右上角齿轮图标旁边的加号 (+), 选择 **Add...**, 接着点击左侧列表中的 **Conda Environment** -> **Existing environment**; - 浏览器窗口将会弹出,从中定位到 Anaconda 安装目录下的 envs 文件夹内对应名称(即此处应为 "pytorch")的子文件夹内的 `python.exe` 文件位置,选中它之后确认应用更改。 此时应该可以在 PyCharm 终端里验证 PyTorch 是否正确加载以及 GPU 加速功能是否可用: ```python import torch print("PyTorch version:", torch.__version__) print("CUDA available:", torch.cuda.is_available()) ``` 如果一切顺利的话,这段代码应当能够打印出当前使用的 PyTorch 版本信息及其对 CUDA 的支持状态。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值