求让∑(ai−bi)2的值最小的最小操作次数。
首先想如何使∑(ai−bi)2最小,这个给两个数组排序就好了,这样的话相减后的平方和一定是最小的。
那么问题就剩求最小的操作次数了。
分析样例,排完序后数组中的值不那么重要了,需要的只是其中的大小关系,于是就考虑到了离散化。
离散化后,数组 a 以数组 b 的元素为序的情况下的逆序对就是需要的最小交换次数。
#include <bits/stdc++.h>
using namespace std;
const int maxn = 500000 + 5, mod = 1e8 - 3;
int c[maxn];
int n;
struct node {
int val, th;
bool operator < (const node &k) const {
return val < k.val;
}
bool operator >= (const node &k) const {
return val >= k.val;
}
} a[maxn], b[maxn];
int lowbit(int x) { return x & -x; }
void add(int i, int x)
{
while(i <= n) {
c[i] += x;
i += lowbit(i);
}
}
int que(int i)
{
int ret = 0;
while (i) {
ret += c[i];
i -= lowbit(i);
}
return ret;
}
int main()
{
cin >> n;
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i].val);
a[i].th = i;
}
for (int i = 1; i <= n; i++) {
scanf("%d", &b[i].val);
b[i].th = i;
}
sort(a + 1, a + 1 + n);
sort(b + 1, b + 1 + n);
for (int i = 1; i <= n; i++) {
a[a[i].th].val = i;
b[b[i].th].val = i;
}
for (int i = 1; i <= n; i++) b[i].th = i;
sort(b + 1, b + 1 + n);
for (int i = 1; i <= n; i++) {
int pos = lower_bound(b + 1, b + 1 + n, a[i]) - b;
a[i].val = b[pos].th;
}
/* for (int i = 1; i <= n; i++) {
cout << a[i].val << " ";
} */
int ans = 0;
for (int i = 1; i <= n; i++) {
add(a[i].val, 1);
ans = (ans + i - que(a[i].val)) % mod;
}
cout << ans;
;
return 0;
}
AC后去看题解,我的代码中有几个操作是O(N*LogN)的,但题解的操作直接将这些操作优化成了O(N)。
这是他们的代码:
for (int i = 1; i <= n; i++) {
a[a[i].loc] = b[i].loc;//离散优化
}
我的:
for (int i = 1; i <= n; i++) {
a[a[i].th].val = i;
b[b[i].th].val = i;
}
for (int i = 1; i <= n; i++) b[i].th = i;
sort(b + 1, b + 1 + n);
for (int i = 1; i <= n; i++) {
int pos = lower_bound(b + 1, b + 1 + n, a[i]) - b;
a[i].val = b[pos].th;
}
这两段代码运行后的结果是完全相同的,但是我的在时间复杂度上多了个LogN,在数据比较毒瘤的情况下,还是有可能被卡的。
分析一下,想要的最终的离散化结果就是,在数组 a 中第 i 个数在数组 b 中是第几个。
我们不同的代码之前的相同之处就是分别给 a 和 b 排了序,排序完后原有的值就不重要了,重要的是大小关系。
a 中的 1 和 b 中的 11 可以说是等价的了。
所以题解的代码和我的代码运行完结果是一样的。
我的代码有些画蛇添足,先将a 和 b对整数集进行了离散化,再用排序一遍,再用lower_bound找 a 中的元素在 b 中是第几个。
这样做不如题解的直接映射。
最后纪念一下这是我在洛谷第一道独立思考做出来的蓝题嘻嘻嘻