A-区间最大值
定义 a[i] = n % i,给定L, R,求区间LR中,数组a的最大值。n <= 1e8.
做法:
如果n <= 1e6,可以建st表查询。注意到询问的次数才1e4,可以考虑下整除分块。本地打表分块,输出一个块内所有n % i的值,发现块内的左端点的n % i的值是最大的。
从L开始到R进行整除分块的操作,不断更新最大值就好了。
#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 1e6 + 5, mod = 1e9 + 7;
void solve()
{
int n, m;
cin >> n >> m;
while(m--)
{
int L, R;
scanf("%lld%lld", &L, &R);
int ma = 0;
for (int l = L, r; l <= R; l = r + 1)
{
r = n / (n / l);
if (L <= l && r <= R) ma = max(ma, n % l);
}
ma = max(ma, n % L);
ma = max(ma, n % max ((n / (n / R + 1) + 1), L ) ) ;
printf("%lld\n", ma);
}
}
signed main()
{
int tt;
// cin >> tt;
tt = 1;
while (tt--) solve();
return 0;
}
I-V字钩爪
每次在数组中取出两个数a[i]与a[i+k],k是定值,取出后就没这个数了。求取出的数的和的最大值。
做法:
由于k是定值,则下标i + s * k 可以连成一条链,如果这条链上节点是偶数,那么可以两两一组;如果是奇数,那就必须舍弃某个节点,通过草稿纸画画可以发现(没发现还可以用dp求解),舍弃的节点一定是个奇数节点,所以求奇数节点中的最小值,舍弃他即可。
关于dp求解链上的最大值:
f[i][0]表示不选,f[i][1]表示选。
for (int j = 2; j <= cnt; j++) {
f[j][0] = max(f[j - 1][0], f[j - 1][1]);
f[j][1] = f[j - 1][0] + b[j] + b[j - 1];
}
#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 1e6 + 5, mod = 1e9 + 7;
int a[N];
bool f[N];
void solve()
{
int n, k;
cin >> n >> k;
for (int i = 1; i <= n; i++)
cin >> a[i];
int ans = 0;
for (int i = 1; i <= n; i++) {
int cnt = 0;
int mi = 1e18;
if (f[i]) continue;
for (int j = i, p = 1; j <= n; j += k, p++) {
cnt++;
ans += a[j];
f[j] = 1;
if (p & 1)
mi = min(mi, a[j]);
}
if (cnt & 1)
ans -= mi;
}
cout << ans;
}
signed main()
{
int tt;
// cin >> tt;
tt = 1;
while (tt--) solve();
return 0;
}
F-一个很大的数
给定数x质因数分解的结果,求x的因数中有多少因子互质。这里认为(i,j)与(j,i)是不同的对。
做法:
不同质因子之间可能有各种各样的组合,都能形成互质的因子。可以想象一个n位的二进制数,为1的数位与为0的数位代表了因子之间的组合情况。1分成一组,0分成一组。
一个质因子p[i]有(c[i] + 1)种可能性去组合。
规定1这一组的质因子只有c[i]种可能性去组合,即忽略了指数为0的情况,因为指数为0,那就相当于没有选上这个数;为0这一组的质因子有(c[i] + 1)种可能性。可以举个例子,如果p[i]在1这一组,然后他指数选择0,其他的数选好乘完后得到(x,y)这么一对,因为p[i]指数是0,那么如果p[i]分配到0那一组去,仍然能得到(x,y)这么一对,就重复计数了。
============我是手动分界线 ===============
化繁为简,合法的一对是(x,y),对于一个质因子,他有三种选择,去左边的x,去右边的y,或者哪里都不去。那这不裸的dp计数了:
#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 1e6 + 5, mod = 1e9 + 7;
int p[N], c[N];
int f[N][3];
void solve()
{
int n;
cin >> n;
f[0][0] = 1;
for (int i = 1; i <= n; i++) {
scanf("%lld%lld", &p[i], &c[i]);
f[i][0] = (f[i - 1][0] + f[i - 1][1] + f[i - 1][2]) % mod;
f[i][1] = (f[i - 1][0] + f[i - 1][1] + f[i - 1][2]) * c[i] % mod;
f[i][2] = (f[i - 1][0] + f[i - 1][1] + f[i - 1][2]) * c[i] % mod;
}
cout << (f[n][0] + f[n][1] + f[n][2]) % mod << "\n";
}
signed main()
{
int tt;
cin >> tt;
// tt = 1;
while (tt--) solve();
return 0;
}
E-爬塔
给定L,R,玩家可以从区间任意一个点开始出发。初始血量为1,如果遇见1,血量+1,;遇见0,血量-1。玩家要求结束的时候血量也为1,求在区间LR内最多能走几步。题目保证不管从哪个点开始出发,最多走的步数不会超过10.
做法:枚举每个点开始最多走10步,记录走j步是否能结束时血量为1。对于查询,st表就可以做到。
#include <bits/stdc++.h>
// #define int long long
using namespace std;
const int N = 100000 + 5, mod = 1e9 + 7;
char s[N];
int ma[N][11][22];
int f[N][11];
int lo[N];
int n;
int ws(int n)
{
int ret = 0;
while(n){
ret++;
n >>= 1;
}
return ret - 1;
}
void init()
{
for (int i = 1; i <= n; i++) {
for (int p = 1; p <= 10; p++) ma[i][p][0] = f[i][p];
lo[i] = ws(i);
}
int t = lo[n] + 1;
for (int j = 1; j < t; j++){
for (int p = 1; p <= 10; p++)
for (int i = 1; i <= n - (1 << j) + 1; i++) {
ma[i][p][j] = max(ma[i][p][j - 1], ma[i + (1 << (j - 1))][p][j - 1]);
}
}
}
int que(int l, int r, int p)
{
int k = lo[r - l + 1];
return max(ma[l][p][k], ma[r - (1 << k) + 1][p][k]);
}
void solve()
{
cin >> n;
scanf("%s", s + 1);
for (int i = 1; i <= n; i++) {
int sum = 1;
for (int j = 1; j <= 10; j++) {
if (i + j - 1 > n) break;
if (s[i + j - 1] == '1') sum++;
else sum--;
if (sum == 0) break;
if (sum == 1) f[i][j] = 1;
}
}
// cout << f[1][6] << "\n";
init();
int q;
cin >> q;
while(q--)
{
int l, r;
scanf("%d%d", &l, &r);
int ans = 0;
if (r - 10 + 1 >= l) {
for (int i = 1; i <= 10; i++) {
int ret = que(l, r - 10 + 1, i);
if (ret) ans = max(ans, i);
}
}
for (int i = max(l, r - 10 + 1); i <= r; i++) {
int len = r - i + 1;
// printf("len = %d\n", len);
for (int j = 1; j <= len; j++) {
if (f[i][j]) ans = max(ans, j);
}
}
printf("%d\n", ans);
}
}
signed main()
{
int tt;
// cin >> tt;
tt = 1;
while (tt--) solve();
return 0;
}
H-变换01串
有两个操作:前缀取反,后缀取反。有q次询问,opt = 1,回答区间LR的01串最小清零操作次数;opt = 2,将区间LR取反。
做法:草稿纸画一画,发现一个01串清零最小操作次数是连续的0和连续的1的块数-1。这个信息的修改和查询都可以用线段树来实现,所以直接上线段树。
对于两段区间01块数的合并,如果左区间的右端点与右区间的左端点相同,那么合并块数 = 左块数+右块数-1,否则合并块数 = 左块数+右块数。
查询:与合并操作类似。
修改:重点是懒标记,add ^= 1即可,如果碰到add = 1,那就懒标记下传,左右端点取反,区间的块数是不受影响的。
#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 1e6 + 5, mod = 1e9 + 7;
char s[N];
struct node{
int l, r;
int left, right, val;//val为总段数
int add;
#define l(x) tree[x].l
#define r(x) tree[x].r
} tree[N * 4];
void build(int p, int l, int r)
{
tree[p].l = l, tree[p].r = r;
if (l >= r) {
tree[p].val = 1;
if (s[l] == '1')
tree[p].left = tree[p].right = 1;
else
tree[p].left = tree[p].right = 0;
return;
}
int mid = (l + r) >> 1;
int chl = p * 2, chr = p * 2 + 1;
build(chl, l, mid);
build(chr, mid + 1, r);
tree[p].left = tree[chl].left;
tree[p].right = tree[chr].right;
if (tree[chl].right == tree[chr].left)
tree[p].val = tree[chl].val + tree[chr].val - 1;
else
tree[p].val = tree[chl].val + tree[chr].val;
}
void pushdown(int p)
{
if (tree[p].add) {
int chl = p * 2, chr = p * 2 + 1;
tree[chl].add ^= 1;
tree[chr].add ^= 1;
// tree[chl].val += tree[p].add * (r(chl) - l(chl) + 1);
// tree[chr].val += tree[p].add * (r(chr) - l(chr) + 1);
tree[chl].left ^= 1, tree[chl].right ^= 1;
tree[chr].left ^= 1, tree[chr].right ^= 1;
tree[p].add = 0;
}
}
void up(int p, int l, int r, int x)
{
if (l <= l(p) && r >= r(p)) {
// tree[p].val += x * (r(p) - l(p) + 1);
tree[p].left ^= 1;
tree[p].right ^= 1;
tree[p].add ^= 1;
return;
}
pushdown(p);
int mid = (l(p) + r(p)) >> 1;
int chl = p * 2, chr = p * 2 + 1;
if (l <= mid) up(chl, l, r, x);
if (mid < r) up(chr, l, r, x);
tree[p].left = tree[chl].left;
tree[p].right = tree[chr].right;
if (tree[chl].right == tree[chr].left)
tree[p].val = tree[chl].val + tree[chr].val - 1;
else
tree[p].val = tree[chl].val + tree[chr].val;
}
int que(int p, int l, int r)
{
if (l <= l(p) && r >= r(p)) {
return tree[p].val;
}
pushdown(p);
int mid = (l(p) + r(p)) >> 1;
int chl = p * 2, chr = p * 2 + 1;
int ret = 0;
int ret1 = 0, ret2 = 0;
if (l <= mid) {
ret1 = que(chl, l, r);
ret = ret1;
}
if (mid < r) {
ret2 = que(chr, l, r);
if (ret1 != 0) {
if (tree[chl].right == tree[chr].left)
ret += ret2 - 1;
else
ret += ret2;
}
else
ret = ret2;
}
return ret;
}
void solve()
{
int n, m;
cin >> n >> m;
scanf("%s", s + 1);
build(1, 1, n);
while(m--)
{
int op, l, r;
scanf("%lld%lld%lld", &op, &l, &r);
if (op == 1) {
printf("%lld\n", que(1, l, r) - 1);
}
else{
up(1, l, r, 1);
}
}
}
signed main()
{
int tt;
// cin >> tt;
tt = 1;
while (tt--) solve();
return 0;
}