MNC代码运行错误记录集锦

MNC代码运行错误记录集锦上一篇博客介绍了MNC的理论知识,这篇主要介绍我在跑作者提供的源码时出现的一些错误,以及错误的解决方案。上一篇博客介绍了MNC的理论知识,这篇 博客主要介绍我在跑作者提供的源码时出现的一些错误,以及错误的解决方案MNC工程地址:https://github.com/dai...

2018-03-24 15:49:04

阅读数 191

评论数 0

阅读笔记:Instance-aware semantic segmentation via Multi-task Network Cascades

论文阅读:Instance-aware semantic segmentation via Multi-task Network Cascades论文信息:CVPR2016, PASCAL VOC in VGG 63.5% mAP. COCO2015 in resnet101 won first ...

2018-03-24 15:31:53

阅读数 235

评论数 0

从传统方法到深度学习,人脸特征点定位方法综述

人脸关键点检测是人脸识别和分析领域中的关键一步,它是诸如自动人脸识别、表情分析、三维人脸重建及三维动画等其它人脸相关问题的前提和突破口。近些年来,深度学习方法由于其自动学习及持续学习能力,已被成功应用到了图像识别与分析、语音识别和自然语言处理等很多领域,且在这些方面都带来了很显著的改善。因此,本文...

2018-01-15 11:11:47

阅读数 416

评论数 0

caffe添加python数据层(ImageData)

caffe 添加python数据层本文主要是详细介绍如何在caffe中添加自定义python数据层(imagedata类型)。我之所以要实现这个python数据层是因为最近准备使用caffe+LSTM结构做行为识别,需要给视频每帧添加一个clips数据层,这意味着整个网络的输入有三个(data,l...

2018-01-02 14:54:20

阅读数 2849

评论数 1

error: function "atomicAdd(double *, double)" has already been defined错误解决方法

error: function "atomicAdd(double *, double)" has already been defined错误解决方法 cuda 8.0 提供了对atomicAdd的定义,但atomicAdd在之前的cuda toolkit中并未出现...

2017-12-08 17:07:37

阅读数 339

评论数 0

t-SNE高维数据可视化(python)

t-SNE高维数据可视化(python) t-SNE(t-distributedstochastic neighbor embedding )是目前最为流行的一种高维数据降维的算法。在大数据的时代,数据不仅越来越大,而且也变得越来越复杂,数据维度的转化也在惊人的增加,例如,一组图像的维度就是该图像...

2017-12-01 18:37:05

阅读数 6216

评论数 0

迁移学习与微调的关系

迁移学习与微调的关系 来看一下CS231n对于迁移学习的解释吧。 在实际中,因为数据量小的缘故,很少有人会去从零开始去训练出一个CNN(train from scratch)。相反,普遍的做法都是在一个大的数据集上(比如ImageNet,包含120万张来自1000的类的数据集)进行预训练一个CN...

2017-11-30 16:34:05

阅读数 1631

评论数 0

阅读笔记(paper+code):Residual Attention Network for Image Classification

阅读笔记(paper+code):Residual Attention Network for Image Classification 代码链接:https://github.com/fwang91/residual-attention-network 深度学习中的attention,源自于...

2017-11-28 10:31:50

阅读数 628

评论数 0

C++类模板 template <class T>详细使用方法

C++类模板 template 详细使用方法 类模板与函数模板的定义和使用类似。 有时,有两个或多个类,其功能是相同的,仅仅是数据类型不同,如下面语句声明了一个类: class Compare_int { public : Compare(int a,int b) { ...

2017-11-27 21:48:30

阅读数 2029

评论数 1

ROI Pooling层详解

ROI Pooling层详解 原文链接:https://blog.deepsense.ai/region-of-interest-pooling-explained/ 目标检测typical architecture 通常可以分为两个阶段: (1)region proposal:给定...

2017-11-12 19:38:02

阅读数 22061

评论数 14

RCNN系列目标检测方法概述

R-CNN系列算法是将将CNN方法引入目标检测领域的开山之作,极大改善目标检测的效果。 传统的目标检测:穷举的方式进行滑窗处理; R-CNN:基于候选区域的方法(region proposals) 一、预备知识 物体检测和图片分类的区别:图片分类不需要定位,而物体检测需要定位出物...

2017-11-12 19:24:53

阅读数 1355

评论数 0

阅读笔记(paper+code):Residual Attention Network for Image Classification

阅读笔记(paper+code):Residual Attention Network for Image Classification 代码链接:https://github.com/fwang91/residual-attention-network 深度学习中的attention,源自于...

2017-10-23 09:00:00

阅读数 1968

评论数 1

行为识别阅读笔记(paper+code):Real-time Action Recognition with Enhanced Motion Vector CNNs

行为识别阅读笔记(paper+code):Real-time Action Recognition with Enhanced Motion VectorCNNs 这篇文章是发表在CVPR2016上的一篇文章,这篇文章主要是对双流法进行了改进,双流法的诟病就是采用optimal flow作为te...

2017-10-23 08:49:22

阅读数 2096

评论数 1

行为识别阅读笔记(paper + parted code):Beyond Frame-level CNN Saliency-Aware 3-D CNN with LSTM for Video Acti

行为识别阅读笔记(paper+ parted code):Beyond Frame-level CNN Saliency-Aware 3-DCNN with LSTM for Video Action Recognition 这篇文章是发篇在IEEESignal Processing2016上的...

2017-10-23 08:45:13

阅读数 1368

评论数 5

行为识别阅读笔记:ActionRecognition using Visual Attention

行为识别阅读笔记:ActionRecognition using Visual Attention http://shikharsharma.com/projects/action-recognition-attention/ 这篇文章是发表在ICLR2016上的一篇文章,从文章给出的多个数据...

2017-10-23 08:43:57

阅读数 1533

评论数 0

CMC曲线(累计匹配曲线)

CMC曲线(累计匹配曲线) CMC曲线在人脸识别,行人重识别等领域使用的非常大,但却很少有文章去详细的介绍CMC曲线,这是我在researchgate网页上某个博主主页上找到的关于CMC曲线的介绍,个人觉得通过例子讲解的形式来介绍CMC使得更加通俗易懂,让人一看就明白。以下是原文: I thin...

2017-07-03 08:53:13

阅读数 5257

评论数 0

行人重识别综述(Person Re-identification: Past, Present and Future)

Person Re-identification overview 这是一篇关于person re-ID(行人重识别)的综述性文章,原文名:Person Re-identification:Past, Present and Future由于文章篇幅过长(page 20),所以本人在阅读这篇文献时...

2017-07-02 10:21:40

阅读数 7372

评论数 2

Visual Studio 2013使用Libsvm训练数据

Visual Studio 2013使用Libsvm训练数据 最近在做周志华《机器学习》上面的习题时,需要使用linsvm库对西瓜数据集使用线性核和高斯核进行训练,比较其支持向量的差别,下面就简单的介绍一下,训练的过程。 在使用libsvm之前我们需要去官网下载最新的版本libsvm-3.22 ...

2017-05-14 21:26:57

阅读数 646

评论数 1

小数据集训练深度网络的小技巧

小数据集训练深度网络的小技巧 使用小数据集训练卷积神经网络时最大的缺点就是很容易导致过拟合问题。因此在这种情况下,常常会采用面几种方法: 1.per-training:微调对于没有足够训练样本时初始化深度网络参数的一个有效的方法,一般都会选取与之具有相似结构的网络模型训练结果进行微调。 ...

2017-05-13 21:21:35

阅读数 2987

评论数 0

相比于深度学习,传统的机器学习算法难道就此没落了吗,还有必要去学习吗?

传统机器学习与深度学习对比

2017-05-12 21:03:47

阅读数 813

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭