opencv学习---计算图像的水平积分投影和垂直积分投影

利用OPENCV计算图像的水平积分投影和垂直积分投影
        在做图像处理时会经常需要接触到各种目标提取的方法,其中最常见的就是利用积分投影对目标进行提取分割,下面就直接上代码,通过代码来介绍一下如何获得图像的水平积分投影和垂直积分投影。该代码编写风格较为简单,适合刚入门学习opencv的新手。
#include<opencv2\opencv.hpp>
#include<stdio.h>
using namespace cv;
Mat VerticalProjection(Mat srcImage)//垂直积分投影
{
	if (srcImage.channels() > 1)
		cvtColor(srcImage, srcImage, CV_RGB2GRAY);
	Mat srcImageBin;
	threshold(srcImage, srcImageBin, 120, 255, CV_THRESH_BINARY_INV);
	imshow("二值图", srcImageBin);
	int *colswidth = new int[srcImage.cols];  //申请src.image.cols个int型的内存空间
	memset(colswidth, 0, srcImage.cols * 4);  //数组必须赋初值为零,否则出错。无法遍历数组。
	//  memset(colheight,0,src->width*4);  
	// CvScalar value; 
	int value;
	for (int i = 0; i < srcImage.cols; i++)
	for (int j = 0; j < srcImage.rows; j++)
	{
		//value=cvGet2D(src,j,i);
		value = srcImageBin.at<uchar>(j, i);
		if (value == 255)
		{
			colswidth[i]++; //统计每列的白色像素点  
		}
	}
	Mat histogramImage(srcImage.rows, srcImage.cols, CV_8UC1);
	for (int i = 0; i < srcImage.rows; i++)
	for (int j = 0; j < srcImage.cols; j++)
	{
		value = 255;  //背景设置为白色。 
		histogramImage.at<uchar>(i, j) = value;
	}
	for (int i = 0; i < srcImage.cols; i++)
	for (int j = 0; j < colswidth[i]; j++)
	{
		value = 0;  //直方图设置为黑色
		histogramImage.at<uchar>(srcImage.rows - 1 - j, i) = value;
	}
	imshow(" 垂直积分投影图", histogramImage);
	return histogramImage;
}
Mat HorizonProjection(Mat srcImage)//水平积分投影
{
	if (srcImage.channels() > 1)
		cvtColor(srcImage, srcImage, CV_RGB2GRAY);
	Mat srcImageBin;
	threshold(srcImage, srcImageBin, 120, 255, CV_THRESH_BINARY_INV);
	imshow("二值图", srcImageBin);
	int *rowswidth = new int[srcImage.rows];  //申请src.image.rows个int型的内存空间
	memset(rowswidth, 0, srcImage.rows * 4);  //数组必须赋初值为零,否则出错。无法遍历数组。
	int value;
	for (int i = 0; i<srcImage.rows; i++)
	for (int j = 0; j<srcImage.cols; j++)
	{
		//value=cvGet2D(src,j,i);
		value = srcImageBin.at<uchar>(i, j);
		if (value == 255)
		{
			rowswidth[i]++; //统计每行的白色像素点  
		}
	}
	Mat histogramImage(srcImage.rows, srcImage.cols, CV_8UC1);
	for (int i = 0; i<srcImage.rows; i++)
	for (int j = 0; j<srcImage.cols; j++)
	{
		value = 255;  //背景设置为白色。 
		histogramImage.at<uchar>(i, j) = value;
	}
	//imshow("d", histogramImage);
	for (int i = 0; i<srcImage.rows; i++)
	for (int j = 0; j<rowswidth[i]; j++)
	{
		value = 0;  //直方图设置为黑色
		histogramImage.at<uchar>(i, j) = value;
	}
	imshow("水平积分投影图", histogramImage);
	delete[] rowswidth;//释放前面申请的空间
	return histogramImage;

}
int main()
{
	Mat srcImage = imread("145.png");
	imshow("原图", srcImage);
	Mat VP;
	VP = VerticalProjection(srcImage);
	Mat HP;
	HP = HorizonProjection(srcImage);
	waitKey(0);
	return 0;

}

运行结果:

总的来说,对于计算图像的垂直或水平积分投影,最重要的还是对图像的二值化操作,一个合适的二值化操作,再通过积分投影往往就能比较容易提取出目标;一个垃圾的二值化操作是无法通过投影的方法提取出目标的。


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值