房贷首付、利率下降,但是总购房成本却反而涨了,买房悠着点

随着房贷首付、利率的下降,不少购房者已被刺激得蠢蠢欲动,不过在下决心购房之前,还是得考虑下自己的承受能力,而且如今的总购房成本可能反而上涨了。

c308b35930c2f8fcc4bab59102325b15.jpeg

以100万的房产为例,按照最新的2.85%的利润和首付15万计算,20年房贷总成本达到126.6万;如果按之前的3.1%的利率和首付30万计算,20年房贷的总成本为124万,可以看出降低了首付和利率之后,由于贷款总额增加,最终支付的利息反而增加了。

fa687338e22b02e33eb109836d4a673c.png

从上述数据还可以看到,降低了首付之后,月供增加较高,之前的首付30万,月供为3917元,而降低首付到15万之后,月供增加至4650元,这是长达20年的贷款,每月承担的供房款应该在购房者的可承受范围内,最好是在夫妻双方收入一半以下。

从这几年的情况还可以看到,对于供房者来说,35岁、40岁是一个重要门槛,许多行业的收入都会在这个年龄段之后下降,千万不要以当下的收入来衡量自己可承受的供房能力。

这几年的情况可以看到,许多夫妻因为年龄的增加,而收入出现下降,甚至面临裁员的情况,如此情况下,供房就成为一个高风险的投资行为。

重庆有个供房者就面临类似的问题,在之前收入高的时候买房,但是供房两年后却因为工作的变动无法承担供房款,被银行收楼,结果是拍卖后得到的收入远低于银行贷款,还要承担银行的拍卖手续费等等费用,最终供房两年后亏掉首付、各种税费等等,还倒欠银行债务。

在如今的环境下,房价未来的走向尚未完全明朗,如此情况下购房者除了付出首付款之外,最好还要准备好未来3年的供房款,避免一旦收入出现变动,供房能继续进行,充足的购房款,让房东可以在收入发生变动后,有足够的时间卖楼。

从这两年的情况还可以看到,如今卖楼并不容易,有部分房东放售房子,长达240天才能卖出,而且价格还可能远低于当时的购入价格。

f55ea7a4b144af1e189d709ceea4de77.jpeg

购房是一个长周期的投资行为,这与股市是完全不同的,股市的流动性非常高,今天买入,明天就能卖出,而且股市一天跌停也就10%,而房子的放售时间很长,市场的变化导致房价下跌的情况可能比股市更严重。

如此情况下,千万不要因为房贷利率、首付的下降,以为手上存款足够支付首付款,现在的收入远超过月供就迅速下手买房,购房牵涉的因素很多,许多人的一生可能只有一次买房的机会,部分消费者如今也重新认识到租房可能是比买房更划算的做法。

动物目标检测数据集 一、基础信息 数据集名称:动物目标检测数据集 图片数量: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 计:12,182张图片 分类类别: Bear(熊)、Cat(猫)、Cattle(牛)、Chicken(鸡)、Deer(鹿)、Dog(狗)、Elephant(大象)、Horse(马)、Monkey(猴子)、Sheep(绵羊) 标注格式: YOLO格式,包含归一化坐标的边界框和数字编码类别标签,支持目标检测模型开发。 数据特性: 涵盖俯拍视角、地面视角等多角度动物影像,适用于复杂环境下的动物识别需求。 二、适用场景 农业智能监测: 支持畜牧管理系统开发,自动识别牲畜种类并统计数量,提升养殖场管理效率。 野生动物保护: 应用于自然保护区监控系统,实检测特定动物物种,辅助生态研究和盗猎预警。 智能养殖设备: 为自动饲喂系统、健康监测设备等提供视觉识别能力,实现精准个体识别。 教育研究工具: 适用于动物行为学研究和计算机视觉教学,提供标准化的多物种检测数据集。 遥感图像分析: 支持航拍图像中的动物种群分布分析,适用于生态调查和栖息地研究。 三、数据集优势 多物种覆盖: 包含10类常见经济动物和野生动物,覆盖陆生哺乳动物与家禽类别,满足跨场景需求。 高密度标注: 支持单图多目标检测,部分样本包含重叠目标标注,模拟真实场景下的复杂检测需求。 数据平衡性: 经分层抽样保证各类别均衡分布,避免模型训练的类别偏差问题。 工业级适用性: 标注数据兼容YOLO系列模型框架,支持快速迁移学习和生产环境部署。 场景多样性: 包含白天/夜间、近距离/远距离、单体/群体等多种拍摄条件,增强模型鲁棒性。
数据集介绍:农场与野生动物目标检测数据集 一、基础信息 数据集名称:农场与野生动物目标检测数据集 图片规模: - 训练集:13,154张图片 - 验证集:559张图片 - 测试集:92张图片 分类类别: - Cow(牛):农场核心牲畜,包含多种姿态和场景 - Deer(鹿):涵盖野外环境中的鹿类目标 - Sheep(羊):包含不同品种的绵羊和山羊 - Waterdeer(獐):稀有野生动物目标检测样本 标注格式: YOLO格式标准标注,含精确边界框坐标和类别标签 数据特征: 包含航拍、地面拍摄等多视角数据,适用于复杂环境下的目标检测任务 二、适用场景 智慧农业系统开发: 支持畜牧数量统计、牲畜行为监测等农业自动化管理应用 野生动物保护监测: 适用于自然保护区生物多样性监测系统的开发与优化 生态研究数据库构建: 为动物分布研究提供标准化视觉数据支撑 智能畜牧管理: 赋能养殖场自动化监控系统,实现牲畜健康状态追踪 多目标检测算法验证: 提供跨物种检测基准,支持算法鲁棒性测试 三、数据集优势 多场景覆盖能力: 整合农场环境与自然场景数据,包含光照变化、遮挡等真实场景 精确标注体系: - 经专业团队双重校验的YOLO格式标注 - 边界框精准匹配动物形态特征 数据多样性突出: - 包含静态、动态多种动物状态 - 涵盖个体与群体检测场景 任务适配性强: - 可直接应用于YOLO系列模型训练 - 支持从目标检测扩展到行为分析等衍生任务 生态研究价值: 特别包含獐等稀有物种样本,助力野生动物保护AI应用开发
数据集介绍:多环境动物及人类活动目标检测数据集 一、基础信息 数据集名称:多环境动物及人类活动目标检测数据集 图片数量: - 训练集:12,599张图片 - 验证集:1,214张图片 - 测试集:607张图片 计:14,420张图片 分类类别: - bear(熊): 森林生态系统的顶级掠食者 - bird(鸟类): 涵盖多种飞行及陆栖鸟类 - cougar(美洲狮): 山地生态关键物种 - person(人类): 自然环境与人类活动交互场景 - truck(卡车): 工业及运输场景的车辆目标 - ungulate(有蹄类动物): 包括鹿、羊等草食性哺乳动物 - wolf(狼): 群体性捕食动物代表 标注格式: YOLO格式标注,包含归一化坐标的边界框及类别标签,可直接适配YOLOv5/v7/v8等主流检测框架。 数据特性: 涵盖航拍、地面监控等多视角数据,包含昼夜不同光照条件及复杂背景场景。 二、适用场景 野生动物保护监测: 支持构建自动识别森林/草原生态系统中濒危物种的监测系统,用于种群数量统计和栖息地研究。 农业与畜牧业管理: 检测农场周边的捕食动物(如狼、美洲狮),及预警牲畜安全风险。 智能交通系统: 识别道路周边野生动物与运输车辆,为自动驾驶系统提供碰撞预警数据支持。 生态研究数据库: 提供7类典型生物与人类活动目标的标注数据,支撑生物多样性分析与人类活动影响研究。 安防监控增强: 适用于自然保护区监控系统,同检测可疑人员(person)与车辆(truck)的非法闯入。 三、数据集优势 多场景覆盖: 包含森林、公路、山地等多类型场景,覆盖从独居动物(cougar)到群体生物(wolf)的检测需求。 类别平衡设计: 7个类别经专业数据采样,避免长尾分布问题,包含: - 3类哺乳动物捕食者(bear/cougar/wolf) - 2类环境指示物种(bird/ung
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值