POJ 1122 FDNY to the Rescue! 反向dijkstra

链接:

1122






题意:

一个城市中有N个交叉路口,给出从一个交叉路口i到另一个交叉路口j所需要的时间(i,j=1~N,单向)如果edge[i][j]=-1 则表示不通

给出一个火警的位置(终点) 和X个消防站(起点)     

输出:每一行描述了一个消防站的信息,这些信息按消防站到达火警位置所需时间从小到大排列。这些信息包括:消防站的位置(初始位置)、火警位置(目标位置)、所需时间以及最短路径上的每个交叉路口。



题解:

起点有多个,终点只有一个。为了只进行一次dijkstra算法 我们可以考虑从终点出发

如果是无向图 终点到起点和起点的距离是一样的。

而如果是有向图,只要进行一点小改动即可:在dij算法中将邻接矩阵edge[i][j] i和J的位置互换。路径则用path存  终点保存-1终止




代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define maxx   0x3f3f3f3f
int map[25][25];
int dis[25];
int vis[25];
int path[25];
struct node
{
    int pos;
    int ans;                       //每个起点的时间排序
} endd[25];
int m,start;
int cmp(node a,node b)
{
    return a.ans<b.ans;
}
void dij()
{
    int i,j,loc,minn;
    for(i=1; i<=m; i++)
    {
        dis[i]=map[i][start];              //i,j互换
        path[i]=start;
        vis[i]=0;
    }
    vis[start]=1;
    path[start]=-1;
    for(i=1; i<m; i++)
    {
        minn=maxx;
        for(j=1; j<=m; j++)
            if(!vis[j]&&dis[j]<minn)
                minn=dis[j],loc=j;
        vis[loc]=1;
        for(j=1; j<=m; j++)
            if(!vis[j]&&dis[j]>dis[loc]+map[j][loc])         //i,j互换
            {
                dis[j]=dis[loc]+map[j][loc];
                path[j]=loc;
            }
    }
    return;
}
int main()
{
    int i,j,t,n,s=0;
    scanf("%d",&m);
    for(i=1; i<=m; i++)
        for(j=1; j<=m; j++)
        {
            scanf("%d",&map[i][j]);
            if(map[i][j]==-1)
                map[i][j]=maxx;
        }
    scanf("%d",&start);
    dij();
    while(~scanf("%d",&endd[s].pos))
    {
        endd[s++].ans=dis[endd[s].pos];
    }
    sort(endd,endd+s,cmp);
    printf("Org\tDest\tTime\tPath\n");
    for(i=0;i<s;i++)
    {
        printf("%d\t%d\t%d",endd[i].pos,start,endd[i].ans);
        j=endd[i].pos;
        while(j!=-1)
        {
            printf("\t%d",j);
            j=path[j];
        }
        cout<<endl;
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值