Kmeans: 指 在平面坐标系中随机生成M个点 然后随机N个类然后在这M个点中随机出N个点作为分类的中心点然后计算其他点和这N个点之间的距离,将每个点分给距离最近的中心点,最后在这N个点确定的N类中分别计算新的距离这类中所有点距离相近的新的中心点 称为 质心 。
import random
import matplotlib.pyplot as plt
import numpy
class KMeans():
def __init__(self, k=1):
'''
:param k: k代表分类数
'''
self.__k = k
self.__data = [] # 存放原始数据
self.__pointCenter = [] # 存放中心点,第一次获得的中心点通过随机方式在__data里随机出来
self.__result = []
for i in range(k):
self.__result.append([]) # [[],[],[],[],[]]
pass
pass
def fit(self, data, threshold, times=50000):
'''
进行模型训练
:param data: 训练数据
:param threshold: 阈值,退出条件
:return:
'''
self.__data = data
self.randomCenter()
print(self.__pointCenter)
centerDistance = self.calPointCenterDistance(self.__pointCenter, self.__data)
# 对原始数据进行分类,将每个点分到离它最近的中心点
i = 0
for temp in centerDistance:
index = temp.index(min(temp))
self.__result[index].append(self.__data[i])
i += 1
pass
# 打印分类结果
# print(self.__result)
oldCenterPoint = self.__pointCenter
newCenterPoint = self.calNewPointCenter(self.__result)
while self.calCenterToCenterDistance(oldCenterPoint, newCenterPoint) > threshold:
times -= 1
result = []
for i in range(self.__k):
result.append([])
pass
# 保存上次的中心点
oldCenterPoint = newCenterPoint
centerDistance = self.calPointCenterDistance(newCenterPoint, self.__data)
# 对原始数据进行分类,将每个点分到离它最近的中心点
i = 0
for temp in centerDistance:
index = temp.index(min(temp))
result[index].append(self.__data[i]) # result = [[[10,20]]]
i += 1
pass
newCenterPoint = self.calNewPointCenter(result)
print(self.calCenterToCenterDistance(oldCenterPoint, newCenterPoint))
self.__result = result
pass
self.__pointCenter = newCenterPoint
return newCenterPoint, self.__result
pass
def calCenterToCenterDistance(self, old, new):
'''
计算两次中心点之间的距离,求和求均值
:param old: 上次的中心点
:param new: 新计算的中心点
:return:
'''
total = 0
for point1, point2 in zip(old, new):
total += self.distance(point1, point2)
pass
return total / len(old)
pass
def calPointCenterDistance(self, center, data):
'''
计算每个点和每个中心点之间的距离
:return:
'''
centerDistance = []
for temp in data:
centerDistance.append([self.distance(temp, point) for point in center])
pass
print(centerDistance)
return centerDistance
pass
def calNewPointCenter(self, result):
'''
计算新的中心点
:param result:
:return:
'''
newCenterPoint = []
for temp in result:
# 转置
temps = [[temp[x][i] for x in range(len(temp))] for i in range(len(temp[0]))]
point = []
for t in temps:
# 对每个维度求和,去平均
point.append(sum(t) / len(t)) # mean
pass
newCenterPoint.append(point)
pass
print(newCenterPoint)
return newCenterPoint
pass
def distance(self, pointer1, pointer2):
'''
计算两个点之间的距离,支持任意维度,欧式距离
:param pointer1:
:param pointer2:
:return:
'''
distance = (sum([(x1 - x2) ** 2 for x1, x2 in zip(pointer1, pointer2)])) ** 0.5
return distance
pass
def randomCenter(self):
'''
从原始的__data里随机出最开始进行计算的k个中心点
:return:
'''
while len(self.__pointCenter) < self.__k:
# 随机一个索引
index = random.randint(0, len(self.__data) - 1)
# 判断中心点是否重复,如果不重复,加入中心点列表
if self.__data[index] not in self.__pointCenter:
self.__pointCenter.append(self.__data[index])
pass
pass
pass
pass
if __name__ == "__main__":
data = [[random.randint(1, 100), random.randint(1, 100)] for i in range(1000)]
for i in range(10):
kmeans = KMeans(k=5)
centerPoint, result = kmeans.fit(data, 0.0001)
print(centerPoint)
plt.plot()
plt.title("KMeans Classification")
i = 0
tempx = []
tempy = []
color = []
for temp in result:
temps = [[temp[x][i] for x in range(len(temp))] for i in range(len(temp[0]))]
color += [i] * len(temps[0])
tempx += temps[0]
tempy += temps[1]
i += 2
pass
plt.scatter(tempx, tempy, c=color, s=30)
plt.show()
pass
pass
效果图: