Weighted Nuclear Norm Minimization with Application to Image Denoising——学习笔记

本文介绍了加权核范数最小化(WNNM)方法,用于改善低秩矩阵逼近中的图像去噪效果。WNNM通过引入权重,解决了标准核范数对所有奇异值同等处理的问题,从而更好地保留图像的主要成分。通过非升序、任意序和非降序权重排列的讨论,提出了解决方案和迭代算法。在图像去噪应用中,权重分配与奇异值大小成反比,以优化去噪效果。
摘要由CSDN通过智能技术生成

前景提要

软阈值函数

自然图像中非局部相似块形成的矩阵具有低秩性,可用于高性能的图像恢复任务。

图像非局部自相似性(NSS)的应用极大地提高了图像去噪性能。

NSS先验是指在自然图像中,对于给定的局部patch,可以在图像中找到许多与其相似的patches。

通过将非局部相似块向量叠加成一个矩阵,该矩阵应该是一个低秩矩阵,并且具有稀疏的奇异值。这一假设得到了Wang等人的验证。在[26]中,他们称之为非局部谱先验.。

低秩矩阵近似方法一般可分为两类:低秩矩阵分解(LRMF)方法和核范数最小化(NNM)方法。LRMF的目标是找到一个矩阵 X X X,它在一定的数据保真度函数下尽可能接近 Y Y Y,同时能够分解到两个低秩矩阵的乘积中,此方法是一个非凸优化问题。NNM的一个显著优点在于它是对具有一定数据保真度项的非凸LRMF问题是严格的凸松弛。
在之前的研究中已经证实大多数低秩矩阵可以通过求解NNM问题来完全恢复,且基于NNM的低秩矩阵逼近问题具有F范数保真度。即解决:
在这里插入图片描述式中, λ λ λ为正常数,其最优解为:
在这里插入图片描述
Y = U Σ V T Y=U{\Sigma}V^T Y=UΣVT Y Y Y的奇异值分解, S λ ( Σ ) S_{\lambda}({\Sigma}) SλΣ带参数 λ λ λ的对角矩阵 ∑ ∑ 的软阈值函数,有:
在这里插入图片描述
上述奇异值软阈值方法已被广泛应用于解决许多基于NNM的问题。
虽然NNM在低秩矩阵逼近中得到了广泛的应用,但仍存在一些问题。为了追求凸性,标准核范数对每个奇异值进行同等处理,从而使(3)中的软阈值算子以相同的量λ收缩每个奇异值。这使得我们忽略了较大的奇异值应该减少压缩以保留主要数据成分。

因此,为了提高核范数的灵活性,我们提出了加权核范数,并研究了其最小化问题。矩阵X的加权核范数定义为:
在这里插入图片描述

不同权重 w w w条件下的求解方法

通过使用F范数来度量观测数据矩阵 Y Y Y和潜在数据矩阵 X X X之间的差异,并引入权重,将eq1)转换为eq(5),在这里插入图片描述
然而,由于(5)中的目标函数一般不是凸的,因此WNNM问题比NNM更难优化。在分析WNNM问题之前,我们首先给出定理1:
在这里插入图片描述(论文原文有证明过程)

权重按非升序排列 w 1 ≥ ⋅ ⋅ ≥ w n ≥ 0 w_1≥··≥w_n≥0 w1wn0

基于定理1,我们得到了(5)中w1≥··≥wn≥0的WNNM问题的全局最优解。我们有下面的定理2:
在这里插入图片描述(论文原文有证明过程)

权重按任意序排列

在权重不是按非升序而是按任意顺序排列的情况下,(5)中的WNNM问题是非凸的,因此我们不能有它的全局最小值。我们提出了一种迭代算法来求解它。
在定理1中,我们证明了(5)的解可以通过解(6)得到。设 B = P ∧ Q T B=P∧Q^T B=P

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值