深入解析标准化在降维中的应用

本文探讨了标准化在降维中的重要性,通过PCA(主成分分析)的例子说明,标准化能去除量纲影响,确保不同特征的平等处理。文章通过模拟实验展示了标准化前后降维结果的差异,并指出在某些特定情况下,标准化可能无效甚至产生负面影响。总结了标准化在处理量纲差异较大的数据点时的注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,我是稀饭。今天给大家分享一下标准化在降维中的应用,内容源于毕业论文中的一部分研究拓展。

对于标准化,相信大家已经不陌生了,一组数据中的某个数,减掉它所在的这组数据的均值,再除以这组数据的标准差,就可以得到对应的标准化分数,也叫z分数。z分数可以回答这样一个问题:“一个给定分数距离平均数多少个标准差”。在平均数之上的分数会得到一个正的标准分数,在平均数之下的分数会得到一个负的标准分数。z分数是一种可以看出某分数在分布中相对位置的方法。



在降维过程中,标准化也非常重要,很多降维算法的前提要求就是数据进行标准化,去除量纲的影响,从而更好地完成降维的过程。以PCA(主成分分析)为例,PCA可以将原来高维的数据投影到某个低维的空间上并使得其方差尽量大。如果数据其中某一特征(矩阵的某一列)的数值特别大,那么它在整个误差计算的比重上就很大,那么可以想象在投影到低维空间之后,为了使低秩分解逼近原数据,整个投影会去努力逼近最大的那一个特征,而忽略数值比较小的特征。因为在建模前我们并不知道每个特征的重要性,这很可能导致了大量的信息缺失。为了“公平”起见,防止过分捕捉某些数值大的特征,我们会对每个特征先进行标准化处理,使得它们的大小都在相同的范围内,然后再进行PCA。

还是以PCA为例,我们来看一下标准化后的数据和未标准化后的数据的降维结果对比。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

稀饭居然不在家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值